Partial regularity and the upper Minkowski dimension of singularities for suitable weak solutions to the 3D co-rotational Beris-Edwards system

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Qiao Liu, Zhongbao Zuo
{"title":"Partial regularity and the upper Minkowski dimension of singularities for suitable weak solutions to the 3D co-rotational Beris-Edwards system","authors":"Qiao Liu,&nbsp;Zhongbao Zuo","doi":"10.1016/j.nonrwa.2025.104511","DOIUrl":null,"url":null,"abstract":"<div><div>We study partial regularity and the upper Minkowski dimension of potential singularities for suitable weak solutions to the 3d co-rotational Beris-Edwards system for the nematic liquid crystal flows with Landau-de Gennes potential. Precisely, we establish that there exists a <span><math><mrow><mrow><mi>ε</mi></mrow><mo>&gt;</mo><mn>0</mn></mrow></math></span> such that if <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Q</mi><mo>,</mo><mrow><mi>P</mi></mrow><mo>)</mo></mrow></math></span> is a suitable weak solution, and satisfies<span><span><span><math><mrow><msup><mi>r</mi><mrow><mo>−</mo><mfrac><mrow><mn>6</mn><mi>α</mi></mrow><mrow><mn>7</mn><mi>α</mi><mo>−</mo><mn>6</mn></mrow></mfrac></mrow></msup><msubsup><mo>∫</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>−</mo><msup><mi>r</mi><mn>2</mn></msup></mrow><msub><mi>t</mi><mn>0</mn></msub></msubsup><msup><mrow><mo>(</mo><mo>∥</mo><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mn>2</mn></msup><msup><mrow><mo>,</mo><mo>|</mo><mi>∇</mi><mi>Q</mi><mo>|</mo></mrow><mn>2</mn></msup><msubsup><mrow><mo>)</mo><mo>∥</mo></mrow><mrow><msup><mi>L</mi><mi>α</mi></msup><mrow><mo>(</mo><msub><mi>B</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mi>β</mi></msubsup><mo>+</mo><msubsup><mrow><mo>∥</mo><mrow><mi>P</mi></mrow><mo>∥</mo></mrow><mrow><msup><mi>L</mi><mi>α</mi></msup><mrow><mo>(</mo><msub><mi>B</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mi>β</mi></msubsup><mo>)</mo><mrow><mi>d</mi></mrow><mi>t</mi><mo>≤</mo><mrow><mi>ε</mi></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mn>6</mn><mn>5</mn></mfrac><mo>,</mo><mn>2</mn><mo>]</mo></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>α</mi></mrow><mrow><mn>7</mn><mi>α</mi><mo>−</mo><mn>6</mn></mrow></mfrac><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>, then <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Q</mi><mo>)</mo></mrow></math></span> is regular at <span><math><msub><mi>z</mi><mn>0</mn></msub></math></span>. Based upon the regularity result above, we then prove the upper Minkowski dimension of the potential singularities for any suitable weak solution is at most <span><math><mrow><mfrac><mn>975</mn><mn>758</mn></mfrac><mrow><mo>(</mo><mo>≈</mo><mn>1.286</mn><mo>)</mo></mrow></mrow></math></span>. Additionally, if <span><math><mrow><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>Q</mi><mo>)</mo></mrow><mo>∈</mo><msup><mi>L</mi><mi>p</mi></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mi>L</mi><mi>q</mi></msup><mrow><mo>(</mo><msup><mi>R</mi><mn>3</mn></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mn>1</mn><mo>≤</mo><mfrac><mn>2</mn><mi>p</mi></mfrac><mo>+</mo><mfrac><mn>3</mn><mi>q</mi></mfrac></mrow></math></span> and <span><math><mrow><mfrac><mn>20</mn><mn>7</mn></mfrac><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>&lt;</mo><mi>∞</mi></mrow></math></span>, then the upper Minkowski dimension of the potential singularities is no greater than <span><math><mrow><mi>max</mi><mrow><mo>{</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>}</mo></mrow><mrow><mo>(</mo><mfrac><mn>2</mn><mi>p</mi></mfrac><mo>+</mo><mfrac><mn>3</mn><mi>q</mi></mfrac><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104511"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001932","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We study partial regularity and the upper Minkowski dimension of potential singularities for suitable weak solutions to the 3d co-rotational Beris-Edwards system for the nematic liquid crystal flows with Landau-de Gennes potential. Precisely, we establish that there exists a ε>0 such that if (u,Q,P) is a suitable weak solution, and satisfiesr6α7α6t0r2t0((|u|2,|Q|2)Lα(Br(x0))β+PLα(Br(x0))β)dtε,where α[65,2] and β=4α7α6[1,2], then (u,Q) is regular at z0. Based upon the regularity result above, we then prove the upper Minkowski dimension of the potential singularities for any suitable weak solution is at most 975758(1.286). Additionally, if (u,Q)Lp(0,T;Lq(R3)) with 12p+3q and 207p,q<, then the upper Minkowski dimension of the potential singularities is no greater than max{p,q}(2p+3q1).
三维共旋转Beris-Edwards系统弱解奇异性的部分正则性和上Minkowski维数
研究了具有Landau-de Gennes势的向列液晶流的三维共旋转Beris-Edwards系统的弱解的部分正则性和势奇异点的上Minkowski维数。准确地说,我们建立了一个ε>;0,使得(u,Q,P)是一个合适的弱解,且满足r - 6α - 7α - 6∫t0 - r2t0(∥(|u|2,|∇Q|2)∥Lα(Br(x0))β+∥P∥Lα(Br(x0))β)dt≤ε,其中α∈[65,2],β=4α7α - 6∈[1,2],则(u,Q)在z0处正则。基于上述正则性结果,我们证明了任意合适弱解的潜在奇异点的上Minkowski维数不超过975758(≈1.286)。另外,如果(u,∇Q)∈Lp(0,T;Lq(R3))且1≤2p+3q且207≤p,q<∞,则潜在奇异点的上Minkowski维数不大于max{p, Q}(2p+3q−1)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信