{"title":"Partial regularity and the upper Minkowski dimension of singularities for suitable weak solutions to the 3D co-rotational Beris-Edwards system","authors":"Qiao Liu, Zhongbao Zuo","doi":"10.1016/j.nonrwa.2025.104511","DOIUrl":null,"url":null,"abstract":"<div><div>We study partial regularity and the upper Minkowski dimension of potential singularities for suitable weak solutions to the 3d co-rotational Beris-Edwards system for the nematic liquid crystal flows with Landau-de Gennes potential. Precisely, we establish that there exists a <span><math><mrow><mrow><mi>ε</mi></mrow><mo>></mo><mn>0</mn></mrow></math></span> such that if <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Q</mi><mo>,</mo><mrow><mi>P</mi></mrow><mo>)</mo></mrow></math></span> is a suitable weak solution, and satisfies<span><span><span><math><mrow><msup><mi>r</mi><mrow><mo>−</mo><mfrac><mrow><mn>6</mn><mi>α</mi></mrow><mrow><mn>7</mn><mi>α</mi><mo>−</mo><mn>6</mn></mrow></mfrac></mrow></msup><msubsup><mo>∫</mo><mrow><msub><mi>t</mi><mn>0</mn></msub><mo>−</mo><msup><mi>r</mi><mn>2</mn></msup></mrow><msub><mi>t</mi><mn>0</mn></msub></msubsup><msup><mrow><mo>(</mo><mo>∥</mo><mo>(</mo><mo>|</mo><mi>u</mi><mo>|</mo></mrow><mn>2</mn></msup><msup><mrow><mo>,</mo><mo>|</mo><mi>∇</mi><mi>Q</mi><mo>|</mo></mrow><mn>2</mn></msup><msubsup><mrow><mo>)</mo><mo>∥</mo></mrow><mrow><msup><mi>L</mi><mi>α</mi></msup><mrow><mo>(</mo><msub><mi>B</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mi>β</mi></msubsup><mo>+</mo><msubsup><mrow><mo>∥</mo><mrow><mi>P</mi></mrow><mo>∥</mo></mrow><mrow><msup><mi>L</mi><mi>α</mi></msup><mrow><mo>(</mo><msub><mi>B</mi><mi>r</mi></msub><mrow><mo>(</mo><msub><mi>x</mi><mn>0</mn></msub><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mi>β</mi></msubsup><mo>)</mo><mrow><mi>d</mi></mrow><mi>t</mi><mo>≤</mo><mrow><mi>ε</mi></mrow><mo>,</mo></mrow></math></span></span></span>where <span><math><mrow><mi>α</mi><mo>∈</mo><mo>[</mo><mfrac><mn>6</mn><mn>5</mn></mfrac><mo>,</mo><mn>2</mn><mo>]</mo></mrow></math></span> and <span><math><mrow><mi>β</mi><mo>=</mo><mfrac><mrow><mn>4</mn><mi>α</mi></mrow><mrow><mn>7</mn><mi>α</mi><mo>−</mo><mn>6</mn></mrow></mfrac><mo>∈</mo><mrow><mo>[</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>]</mo></mrow></mrow></math></span>, then <span><math><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>Q</mi><mo>)</mo></mrow></math></span> is regular at <span><math><msub><mi>z</mi><mn>0</mn></msub></math></span>. Based upon the regularity result above, we then prove the upper Minkowski dimension of the potential singularities for any suitable weak solution is at most <span><math><mrow><mfrac><mn>975</mn><mn>758</mn></mfrac><mrow><mo>(</mo><mo>≈</mo><mn>1.286</mn><mo>)</mo></mrow></mrow></math></span>. Additionally, if <span><math><mrow><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>∇</mi><mi>Q</mi><mo>)</mo></mrow><mo>∈</mo><msup><mi>L</mi><mi>p</mi></msup><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mi>T</mi><mo>;</mo><msup><mi>L</mi><mi>q</mi></msup><mrow><mo>(</mo><msup><mi>R</mi><mn>3</mn></msup><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> with <span><math><mrow><mn>1</mn><mo>≤</mo><mfrac><mn>2</mn><mi>p</mi></mfrac><mo>+</mo><mfrac><mn>3</mn><mi>q</mi></mfrac></mrow></math></span> and <span><math><mrow><mfrac><mn>20</mn><mn>7</mn></mfrac><mo>≤</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo><</mo><mi>∞</mi></mrow></math></span>, then the upper Minkowski dimension of the potential singularities is no greater than <span><math><mrow><mi>max</mi><mrow><mo>{</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>}</mo></mrow><mrow><mo>(</mo><mfrac><mn>2</mn><mi>p</mi></mfrac><mo>+</mo><mfrac><mn>3</mn><mi>q</mi></mfrac><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104511"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001932","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
We study partial regularity and the upper Minkowski dimension of potential singularities for suitable weak solutions to the 3d co-rotational Beris-Edwards system for the nematic liquid crystal flows with Landau-de Gennes potential. Precisely, we establish that there exists a such that if is a suitable weak solution, and satisfieswhere and , then is regular at . Based upon the regularity result above, we then prove the upper Minkowski dimension of the potential singularities for any suitable weak solution is at most . Additionally, if with and , then the upper Minkowski dimension of the potential singularities is no greater than .
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.