{"title":"Limit cycles of a class of hybrid piecewise differential systems with a discontinuity line of L shape","authors":"Marly Tatiana Anacona Cabrera , Gerardo Anacona Erazo , Jaume Llibre","doi":"10.1016/j.nonrwa.2025.104492","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we study a class of discontinuous hybrid piecewise differential systems formed by two Hamiltonian systems that we named piecewise hybrid Hamiltonian systems. More precisely, we consider the differential systems with Hamiltonian functions <span><span><span><span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>y</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>x</mi><mi>y</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>A</mi><mo>,</mo><mtext>if</mtext><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span></span><span><span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>y</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>x</mi><mi>y</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mtext>if</mtext><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span></span></span></span>with reset maps <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>s</mi><mi>x</mi></mrow></math></span> on <span><math><mrow><mi>x</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>r</mi><mi>y</mi></mrow></math></span> on <span><math><mrow><mi>y</mi><mo>≥</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mn>0</mn><mo><</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo><</mo><mn>1</mn></mrow></math></span>, and <span><math><mi>A</mi></math></span>, <span><math><mi>B</mi></math></span> are either zero, or one of them is a nonzero homogeneous polynomial of degree 3, <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>≥</mo><mn>0</mn><mtext>and</mtext><mi>y</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span> and <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> is the closure of <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>.</div><div>We provide an upper bound for the maximum number of limit cycles that these hybrid piecewise differential systems can exhibit. In other words, we solve the extension of the 16th Hilbert problem to this class of hybrid differential systems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104492"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001786","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this work we study a class of discontinuous hybrid piecewise differential systems formed by two Hamiltonian systems that we named piecewise hybrid Hamiltonian systems. More precisely, we consider the differential systems with Hamiltonian functions with reset maps on and on for , and , are either zero, or one of them is a nonzero homogeneous polynomial of degree 3, and is the closure of .
We provide an upper bound for the maximum number of limit cycles that these hybrid piecewise differential systems can exhibit. In other words, we solve the extension of the 16th Hilbert problem to this class of hybrid differential systems.
期刊介绍:
Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems.
The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.