Limit cycles of a class of hybrid piecewise differential systems with a discontinuity line of L shape

IF 1.8 3区 数学 Q1 MATHEMATICS, APPLIED
Marly Tatiana Anacona Cabrera , Gerardo Anacona Erazo , Jaume Llibre
{"title":"Limit cycles of a class of hybrid piecewise differential systems with a discontinuity line of L shape","authors":"Marly Tatiana Anacona Cabrera ,&nbsp;Gerardo Anacona Erazo ,&nbsp;Jaume Llibre","doi":"10.1016/j.nonrwa.2025.104492","DOIUrl":null,"url":null,"abstract":"<div><div>In this work we study a class of discontinuous hybrid piecewise differential systems formed by two Hamiltonian systems that we named piecewise hybrid Hamiltonian systems. More precisely, we consider the differential systems with Hamiltonian functions <span><span><span><span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>y</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>x</mi><mi>y</mi><mo>+</mo><msub><mrow><mi>a</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>A</mi><mo>,</mo><mtext>if</mtext><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span></span><span><span><math><mrow><msub><mrow><mi>H</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>1</mn></mrow></msub><mi>x</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>2</mn></mrow></msub><mi>y</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>3</mn></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>4</mn></mrow></msub><mi>x</mi><mi>y</mi><mo>+</mo><msub><mrow><mi>b</mi></mrow><mrow><mn>5</mn></mrow></msub><msup><mrow><mi>y</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>+</mo><mi>B</mi><mo>,</mo><mtext>if</mtext><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msup></mrow></math></span></span></span></span>with reset maps <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>1</mn></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mi>s</mi><mi>x</mi></mrow></math></span> on <span><math><mrow><mi>x</mi><mo>≥</mo><mn>0</mn></mrow></math></span> and <span><math><mrow><msub><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>y</mi><mo>)</mo></mrow><mo>=</mo><mi>r</mi><mi>y</mi></mrow></math></span> on <span><math><mrow><mi>y</mi><mo>≥</mo><mn>0</mn></mrow></math></span> for <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>r</mi><mo>,</mo><mi>s</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, and <span><math><mi>A</mi></math></span>, <span><math><mi>B</mi></math></span> are either zero, or one of them is a nonzero homogeneous polynomial of degree 3, <span><math><mrow><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup><mo>=</mo><mrow><mo>{</mo><mrow><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>)</mo></mrow><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>:</mo><mi>x</mi><mo>≥</mo><mn>0</mn><mtext>and</mtext><mi>y</mi><mo>≥</mo><mn>0</mn><mo>}</mo></mrow></mrow></math></span> and <span><math><msup><mrow><mi>Σ</mi></mrow><mrow><mo>−</mo></mrow></msup></math></span> is the closure of <span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∖</mo><msup><mrow><mi>Σ</mi></mrow><mrow><mo>+</mo></mrow></msup></mrow></math></span>.</div><div>We provide an upper bound for the maximum number of limit cycles that these hybrid piecewise differential systems can exhibit. In other words, we solve the extension of the 16th Hilbert problem to this class of hybrid differential systems.</div></div>","PeriodicalId":49745,"journal":{"name":"Nonlinear Analysis-Real World Applications","volume":"88 ","pages":"Article 104492"},"PeriodicalIF":1.8000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Analysis-Real World Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1468121825001786","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we study a class of discontinuous hybrid piecewise differential systems formed by two Hamiltonian systems that we named piecewise hybrid Hamiltonian systems. More precisely, we consider the differential systems with Hamiltonian functions H1(x,y)=a1x+a2y+a3x2+a4xy+a5y2+A,if(x,y)Σ+H2(x,y)=b1x+b2y+b3x2+b4xy+b5y2+B,if(x,y)Σwith reset maps R1(x)=sx on x0 and R2(y)=ry on y0 for 0<r,s<1, and A, B are either zero, or one of them is a nonzero homogeneous polynomial of degree 3, Σ+={(x,y)R2:x0andy0} and Σ is the closure of R2Σ+.
We provide an upper bound for the maximum number of limit cycles that these hybrid piecewise differential systems can exhibit. In other words, we solve the extension of the 16th Hilbert problem to this class of hybrid differential systems.
一类具有L形不连续线的混合分段微分系统的极限环
本文研究了一类由两个哈密顿系统组成的不连续混合分段微分系统,我们称之为分段混合哈密顿系统。更准确地说,我们考虑具有哈密顿函数H1(x,y)=a1x+a2y+a3x2+a4xy+a5y2+A的微分系统,如果(x,y)∈Σ+H2(x,y)=b1x+b2y+b3x2+b4xy+b5y2+B,如果(x,y)∈Σ−具有复位映射R1(x)=sx在x≥0,R2(y)=ry在y≥0,对于0<;r,s<;1和A, B为零,或者其中一个是3次的非零齐次多项式,Σ+={(x,y)∈R2:x≥0andy≥0},Σ−是R2∈Σ+的闭包。我们给出了这些混合分段微分系统所能表现出的最大极限环数的上界。换句话说,我们解决了第16阶希尔伯特问题对这类混合微分系统的推广。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.80
自引率
5.00%
发文量
176
审稿时长
59 days
期刊介绍: Nonlinear Analysis: Real World Applications welcomes all research articles of the highest quality with special emphasis on applying techniques of nonlinear analysis to model and to treat nonlinear phenomena with which nature confronts us. Coverage of applications includes any branch of science and technology such as solid and fluid mechanics, material science, mathematical biology and chemistry, control theory, and inverse problems. The aim of Nonlinear Analysis: Real World Applications is to publish articles which are predominantly devoted to employing methods and techniques from analysis, including partial differential equations, functional analysis, dynamical systems and evolution equations, calculus of variations, and bifurcations theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信