Supramolecular self-assembly in solid-state lithium batteries: Bulk electrolyte design and interface engineering

Changjian Li , Shanbin Goh , Yu Ou , Chaoyue Sun , Shuaishuai Yan , Wenhui Hou , Yang Lu , Xiao Ma , Zhi Liu , Yuhao Wu , Yingchun Xia , Weili Zhang , Qingbin Cao , Hao Liu , Xuan Song , Xuwen Peng , Jian Feng , Kezhuo Li , Lai Wei , Jia Zhang , Kai Liu
{"title":"Supramolecular self-assembly in solid-state lithium batteries: Bulk electrolyte design and interface engineering","authors":"Changjian Li ,&nbsp;Shanbin Goh ,&nbsp;Yu Ou ,&nbsp;Chaoyue Sun ,&nbsp;Shuaishuai Yan ,&nbsp;Wenhui Hou ,&nbsp;Yang Lu ,&nbsp;Xiao Ma ,&nbsp;Zhi Liu ,&nbsp;Yuhao Wu ,&nbsp;Yingchun Xia ,&nbsp;Weili Zhang ,&nbsp;Qingbin Cao ,&nbsp;Hao Liu ,&nbsp;Xuan Song ,&nbsp;Xuwen Peng ,&nbsp;Jian Feng ,&nbsp;Kezhuo Li ,&nbsp;Lai Wei ,&nbsp;Jia Zhang ,&nbsp;Kai Liu","doi":"10.1016/j.supmat.2025.100118","DOIUrl":null,"url":null,"abstract":"<div><div>The development of solid-state lithium batteries (SSLBs) is pivotal to addressing the escalating global demand for advanced electrochemical energy storage systems, driven notably by electric vehicles and portable electronics. Recently, supramolecular chemistry has demonstrated significant potential in enhancing the performance and stability of SSLBs through precisely controlled molecular interactions and self-assembly processes. This review systematically analyzes recent advancements in supramolecular self-assembly applied to solid-state-electrolyte materials and solid electrode-solid electrolyte interface engineering within SSLBs. Various supramolecular interactions, such as hydrogen bonding, halogen bonding, charge transfer interactions, host-guest interactions, π–π stacking, and dynamic covalent bonding, are comprehensively examined for their roles in constructing electrolytes characterized by superior ionic conductivity, electrochemical stability, mechanical robustness, and self-healing functionality. In addition, we discuss supramolecular strategies for engineering functional interfaces of effectively mitigating lithium dendrite formation, reducing interfacial impedance, and significantly enhancing cycle stability. And the detailed mechanistic insights into how these supramolecular interactions foster optimized ionic conduction pathways, structural integrity, and dynamic adaptability are elucidated. This review underscores the transformative potential of supramolecular chemistry in realizing practical and highly efficient next-generation SSLBs.</div></div>","PeriodicalId":101187,"journal":{"name":"Supramolecular Materials","volume":"4 ","pages":"Article 100118"},"PeriodicalIF":0.0000,"publicationDate":"2025-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Supramolecular Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667240525000273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The development of solid-state lithium batteries (SSLBs) is pivotal to addressing the escalating global demand for advanced electrochemical energy storage systems, driven notably by electric vehicles and portable electronics. Recently, supramolecular chemistry has demonstrated significant potential in enhancing the performance and stability of SSLBs through precisely controlled molecular interactions and self-assembly processes. This review systematically analyzes recent advancements in supramolecular self-assembly applied to solid-state-electrolyte materials and solid electrode-solid electrolyte interface engineering within SSLBs. Various supramolecular interactions, such as hydrogen bonding, halogen bonding, charge transfer interactions, host-guest interactions, π–π stacking, and dynamic covalent bonding, are comprehensively examined for their roles in constructing electrolytes characterized by superior ionic conductivity, electrochemical stability, mechanical robustness, and self-healing functionality. In addition, we discuss supramolecular strategies for engineering functional interfaces of effectively mitigating lithium dendrite formation, reducing interfacial impedance, and significantly enhancing cycle stability. And the detailed mechanistic insights into how these supramolecular interactions foster optimized ionic conduction pathways, structural integrity, and dynamic adaptability are elucidated. This review underscores the transformative potential of supramolecular chemistry in realizing practical and highly efficient next-generation SSLBs.
固态锂电池中的超分子自组装:大块电解质设计和界面工程
固态锂电池(sslb)的发展对于满足全球对先进电化学储能系统不断增长的需求至关重要,尤其是在电动汽车和便携式电子设备的推动下。最近,超分子化学在通过精确控制分子相互作用和自组装过程来增强sslb的性能和稳定性方面显示出了巨大的潜力。本文系统分析了近年来超分子自组装技术在固体电解质材料和固体电极-固体电解质界面工程中的应用进展。各种超分子相互作用,如氢键、卤素键、电荷转移相互作用、主客体相互作用、π -π堆叠和动态共价键,全面研究了它们在构建具有优异离子电导率、电化学稳定性、机械鲁棒性和自愈功能的电解质中的作用。此外,我们讨论了工程功能界面的超分子策略,有效地减少锂枝晶的形成,降低界面阻抗,并显着提高循环稳定性。这些超分子相互作用如何促进优化的离子传导途径、结构完整性和动态适应性的详细机制见解被阐明。这篇综述强调了超分子化学在实现实用和高效的下一代sslb方面的变革潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
6.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信