Solving partial differential equations with random feature models

IF 3.8 2区 数学 Q1 MATHEMATICS, APPLIED
Chunyang Liao
{"title":"Solving partial differential equations with random feature models","authors":"Chunyang Liao","doi":"10.1016/j.cnsns.2025.109343","DOIUrl":null,"url":null,"abstract":"<div><div>Machine learning based partial differential equations (PDEs) solvers have received great attention in recent years. Most progress in this area has been driven by deep neural networks such as physics-informed neural networks (PINNs) and kernel method. In this paper, we introduce a random feature based framework toward efficiently solving PDEs. Random feature method was originally proposed to approximate large-scale kernel machines and can be viewed as a shallow neural network as well. We provide an error analysis for our proposed method along with comprehensive numerical results on several PDE benchmarks. In contrast to the state-of-the-art solvers that face challenges with a large number of collocation points, our proposed method reduces the computational complexity. Moreover, the implementation of our method is simple and does not require additional computational resources. Due to the theoretical guarantee and advantages in computation, our approach is proven to be efficient for solving PDEs.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"152 ","pages":"Article 109343"},"PeriodicalIF":3.8000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100757042500752X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Machine learning based partial differential equations (PDEs) solvers have received great attention in recent years. Most progress in this area has been driven by deep neural networks such as physics-informed neural networks (PINNs) and kernel method. In this paper, we introduce a random feature based framework toward efficiently solving PDEs. Random feature method was originally proposed to approximate large-scale kernel machines and can be viewed as a shallow neural network as well. We provide an error analysis for our proposed method along with comprehensive numerical results on several PDE benchmarks. In contrast to the state-of-the-art solvers that face challenges with a large number of collocation points, our proposed method reduces the computational complexity. Moreover, the implementation of our method is simple and does not require additional computational resources. Due to the theoretical guarantee and advantages in computation, our approach is proven to be efficient for solving PDEs.
用随机特征模型求解偏微分方程
基于机器学习的偏微分方程(PDEs)求解器近年来受到了广泛的关注。该领域的大多数进展都是由深度神经网络驱动的,如物理信息神经网络(pinn)和核方法。在本文中,我们引入了一个基于随机特征的框架来高效求解偏微分方程。随机特征方法最初是为了逼近大型核机而提出的,也可以看作是一种浅层神经网络。我们对我们提出的方法进行了误差分析,并在几个PDE基准测试中提供了全面的数值结果。与当前最先进的求解器面临大量并置点的挑战相比,我们提出的方法降低了计算复杂度。此外,我们的方法实现简单,不需要额外的计算资源。由于理论保证和计算优势,我们的方法被证明是求解偏微分方程的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信