{"title":"On the emergence of almost-honeycomb structures in low-energy planar clusters","authors":"M. Caroccia , K. DeMason , F. Maggi","doi":"10.1016/j.jfa.2025.111205","DOIUrl":null,"url":null,"abstract":"<div><div>Several commonly observed physical and biological systems are arranged in shapes that closely resemble an honeycomb cluster, that is, a tessellation of the plane by regular hexagons. Although these shapes are not always the direct product of energy minimization, they can still be understood, at least phenomenologically, as low-energy configurations. In this paper, explicit quantitative estimates on the geometry of such low-energy configurations are provided, showing in particular that the vast majority of the chambers must be generalized polygons with six edges, and be closely resembling regular hexagons. Part of our arguments is a detailed revision of the estimates behind the global isoperimetric principle for honeycomb clusters due to Hales <span><span>[6]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 2","pages":"Article 111205"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003878","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Several commonly observed physical and biological systems are arranged in shapes that closely resemble an honeycomb cluster, that is, a tessellation of the plane by regular hexagons. Although these shapes are not always the direct product of energy minimization, they can still be understood, at least phenomenologically, as low-energy configurations. In this paper, explicit quantitative estimates on the geometry of such low-energy configurations are provided, showing in particular that the vast majority of the chambers must be generalized polygons with six edges, and be closely resembling regular hexagons. Part of our arguments is a detailed revision of the estimates behind the global isoperimetric principle for honeycomb clusters due to Hales [6].
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis