Efficient and stable CO2 reduction using quaternary ammonium-based high-durability polymer membrane and ionomer in zero-gap electrolyzers

IF 9 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Young Eun Kim , Ji Hee Kim , Hugeun Kwon , Hyejin Lee , Hyo Jun Min , Byungchan Bae , You Na Ko , Dong Hyun Chun , Min Hye Youn , Geun Bae Rhim , Kwang Young Kim , Jong Hak Kim , Dongwon Shin
{"title":"Efficient and stable CO2 reduction using quaternary ammonium-based high-durability polymer membrane and ionomer in zero-gap electrolyzers","authors":"Young Eun Kim ,&nbsp;Ji Hee Kim ,&nbsp;Hugeun Kwon ,&nbsp;Hyejin Lee ,&nbsp;Hyo Jun Min ,&nbsp;Byungchan Bae ,&nbsp;You Na Ko ,&nbsp;Dong Hyun Chun ,&nbsp;Min Hye Youn ,&nbsp;Geun Bae Rhim ,&nbsp;Kwang Young Kim ,&nbsp;Jong Hak Kim ,&nbsp;Dongwon Shin","doi":"10.1016/j.memsci.2025.124724","DOIUrl":null,"url":null,"abstract":"<div><div>Anion exchange membranes and ionomers are key components to efficient and stable CO<sub>2</sub> reduction reaction (CO<sub>2</sub>RR) in electrolyzers. However, their roles at the membrane electrode assembly (MEA) level remain underexplored despite recent advances in CO<sub>2</sub>RR technology. This study investigated physicochemical properties of a quaternary benzyl ammonium (QBA)-based membrane and commercial membranes to identify key descriptors enhancing CO<sub>2</sub>RR for CO production. The QBA membrane possessed high anion conductivity, low swelling ratio, and chemical/mechanical durability. In addition, the QBA ionomer formed a hydrophobic and porous catalyst layer to increase mass transfer and suppress the hydrogen evolution reaction. The MEA with a QBA-based membrane and ionomer binder showed high CO Faradaic efficiencies (FE<sub>CO</sub>) of 90–96% over a wide cell voltage range (1.8–2.5 V) at 343 K. The CO partial current density of the QBA increased with cell voltage and reached 251.53 mA cm<sup>−2</sup> at 2.5 V. The QBA exhibited long-term stability at 200 mA cm<sup>−2</sup>, FE<sub>CO</sub> above 80% for 350 h, and FE<sub>CO</sub> above 70% for the next 150 h while maintaining a cell voltage of 2.43 V. Moreover, QBA exhibited lower sensitivity to relative humidity than the commercial FAA membrane and ionomer, enabling stable CO<sub>2</sub>RR under varying operating conditions. The high CO<sub>2</sub>RR performance and long-term stability resulted from the synergistic effect of the QBA membrane and ionomer.</div></div>","PeriodicalId":368,"journal":{"name":"Journal of Membrane Science","volume":"738 ","pages":"Article 124724"},"PeriodicalIF":9.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0376738825010373","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Anion exchange membranes and ionomers are key components to efficient and stable CO2 reduction reaction (CO2RR) in electrolyzers. However, their roles at the membrane electrode assembly (MEA) level remain underexplored despite recent advances in CO2RR technology. This study investigated physicochemical properties of a quaternary benzyl ammonium (QBA)-based membrane and commercial membranes to identify key descriptors enhancing CO2RR for CO production. The QBA membrane possessed high anion conductivity, low swelling ratio, and chemical/mechanical durability. In addition, the QBA ionomer formed a hydrophobic and porous catalyst layer to increase mass transfer and suppress the hydrogen evolution reaction. The MEA with a QBA-based membrane and ionomer binder showed high CO Faradaic efficiencies (FECO) of 90–96% over a wide cell voltage range (1.8–2.5 V) at 343 K. The CO partial current density of the QBA increased with cell voltage and reached 251.53 mA cm−2 at 2.5 V. The QBA exhibited long-term stability at 200 mA cm−2, FECO above 80% for 350 h, and FECO above 70% for the next 150 h while maintaining a cell voltage of 2.43 V. Moreover, QBA exhibited lower sensitivity to relative humidity than the commercial FAA membrane and ionomer, enabling stable CO2RR under varying operating conditions. The high CO2RR performance and long-term stability resulted from the synergistic effect of the QBA membrane and ionomer.

Abstract Image

在零间隙电解槽中使用季铵盐基高耐久性聚合物膜和离子单体实现高效稳定的CO2还原
阴离子交换膜和离聚体是电解槽中高效稳定的CO2还原反应的关键组成部分。然而,尽管最近CO2RR技术取得了进展,但它们在膜电极组装(MEA)水平上的作用仍未得到充分探索。本研究考察了季苄铵(QBA)基膜和工业膜的物理化学性质,以确定提高CO生产CO2RR的关键描述子。QBA膜具有高阴离子导电性、低溶胀率和化学/机械耐久性。此外,QBA离聚体形成疏水多孔的催化剂层,增加传质,抑制析氢反应。在343 K下,采用qba基膜和离子单体结合剂的MEA在宽电池电压范围(1.8-2.5 V)下显示出90-96%的CO法拉第效率(FECO)。QBA的CO分电流密度随着电池电压的增加而增加,在2.5 V时达到251.53 mA cm−2。QBA在200 mA cm−2下表现出长期稳定性,350 h FECO高于80%,接下来的150 h FECO高于70%,同时保持2.43 V的电池电压。此外,与商用FAA膜和离聚物相比,QBA对相对湿度的敏感性较低,在各种操作条件下都能实现稳定的CO2RR。高CO2RR性能和长期稳定性是由于QBA膜和离聚体的协同作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Membrane Science
Journal of Membrane Science 工程技术-高分子科学
CiteScore
17.10
自引率
17.90%
发文量
1031
审稿时长
2.5 months
期刊介绍: The Journal of Membrane Science is a publication that focuses on membrane systems and is aimed at academic and industrial chemists, chemical engineers, materials scientists, and membranologists. It publishes original research and reviews on various aspects of membrane transport, membrane formation/structure, fouling, module/process design, and processes/applications. The journal primarily focuses on the structure, function, and performance of non-biological membranes but also includes papers that relate to biological membranes. The Journal of Membrane Science publishes Full Text Papers, State-of-the-Art Reviews, Letters to the Editor, and Perspectives.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信