Traveling motility of actin lamellar fragments under spontaneous symmetry breaking

IF 2.3 2区 数学 Q1 MATHEMATICS
Claudia García , Martina Magliocca , Nicolas Meunier
{"title":"Traveling motility of actin lamellar fragments under spontaneous symmetry breaking","authors":"Claudia García ,&nbsp;Martina Magliocca ,&nbsp;Nicolas Meunier","doi":"10.1016/j.jde.2025.113787","DOIUrl":null,"url":null,"abstract":"<div><div>Cell motility is connected to the spontaneous symmetry breaking of a circular shape. In <span><span>[8]</span></span>, Blanch-Mercader and Casademunt performed a nonlinear analysis of the minimal model proposed by Callan and Jones <span><span>[11]</span></span> and numerically conjectured the existence of traveling solutions once that symmetry is broken. In this work, we prove analytically that conjecture by means of nonlinear bifurcation techniques.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"453 ","pages":"Article 113787"},"PeriodicalIF":2.3000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625008149","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Cell motility is connected to the spontaneous symmetry breaking of a circular shape. In [8], Blanch-Mercader and Casademunt performed a nonlinear analysis of the minimal model proposed by Callan and Jones [11] and numerically conjectured the existence of traveling solutions once that symmetry is broken. In this work, we prove analytically that conjecture by means of nonlinear bifurcation techniques.
自发对称性破缺下肌动蛋白片层碎片的运动特性
细胞运动与圆形的自发对称性破缺有关。在[8]中,Blanch-Mercader和Casademunt对Callan和Jones提出的最小模型进行了非线性分析[8],并在数值上推测了一旦对称性被打破,旅行解的存在性。本文利用非线性分岔技术对这一猜想进行了分析证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信