How reliable are long time-series reanalysis and model-based soil moisture products for agricultural soil water stress monitoring? Insights from a five-dataset evaluation across China

IF 6.5 1区 农林科学 Q1 AGRONOMY
Peng Li , Liang He , Xuetong Wang , Ermao Ding , Qiang Yu
{"title":"How reliable are long time-series reanalysis and model-based soil moisture products for agricultural soil water stress monitoring? Insights from a five-dataset evaluation across China","authors":"Peng Li ,&nbsp;Liang He ,&nbsp;Xuetong Wang ,&nbsp;Ermao Ding ,&nbsp;Qiang Yu","doi":"10.1016/j.agwat.2025.109845","DOIUrl":null,"url":null,"abstract":"<div><div>Reliable soil moisture (SM) information underpins agricultural water management, yet large uncertainties remain in how long-term SM products capture hydroclimatic extremes. We systematically evaluate five widely used datasets—ERA5-Land (land reanalysis), GLEAM4 (satellite-driven water balance), GLDAS-Noah and GLDAS-CLSM (land surface models), and MERRA-2 (atmospheric reanalysis)—over China for 1982–2022. Using in situ observations, SMAP-L4 satellite data, and historical records of extreme droughts and floods, we assessed reliability against ground networks (Spearman ρ), consistency across products (Spearman ρ), and spatial coherence with SMAP-L4 (Pearson r). Long-term trends were quantified using the Theil–Sen estimator with the Trend-Free Pre-Whitening Mann–Kendall test. Results reveal a consistent divergence among products. MERRA-2, GLDAS-Noah, and GLEAM4 indicate widespread wetting, with positive SM trends across 33–75 % of grid cells and wet-stress intensification over 24–61 %. In contrast, ERA5-Land and GLDAS-CLSM depict drying, with negative SM trends over ∼47–51 % of grids, drought intensification across 42–45 %, and declining wet stress in 30–40 %. ERA5-Land exhibits the strongest agreement with in situ data (median Spearman ρ = 0.45–0.48) and reliably captures benchmark extremes such as the 1998 Yangtze flood and the 2022 drought. MERRA-2 best matches SMAP-L4 (Pearson r &gt; 0.76 nationwide) but underrepresents persistent droughts. Collectively, these findings establish ERA5-Land as the most reliable long-term benchmark for trend analysis, while underscoring the comparative advantage of MERRA-2 for short-term anomaly detection. Significant discrepancies in transitional and irrigated zones (e.g., the Loess Plateau and Huang–Huai–Hai Plain) underscore the need for climate- and region-specific fusion strategies.</div></div>","PeriodicalId":7634,"journal":{"name":"Agricultural Water Management","volume":"320 ","pages":"Article 109845"},"PeriodicalIF":6.5000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Water Management","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378377425005591","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

Reliable soil moisture (SM) information underpins agricultural water management, yet large uncertainties remain in how long-term SM products capture hydroclimatic extremes. We systematically evaluate five widely used datasets—ERA5-Land (land reanalysis), GLEAM4 (satellite-driven water balance), GLDAS-Noah and GLDAS-CLSM (land surface models), and MERRA-2 (atmospheric reanalysis)—over China for 1982–2022. Using in situ observations, SMAP-L4 satellite data, and historical records of extreme droughts and floods, we assessed reliability against ground networks (Spearman ρ), consistency across products (Spearman ρ), and spatial coherence with SMAP-L4 (Pearson r). Long-term trends were quantified using the Theil–Sen estimator with the Trend-Free Pre-Whitening Mann–Kendall test. Results reveal a consistent divergence among products. MERRA-2, GLDAS-Noah, and GLEAM4 indicate widespread wetting, with positive SM trends across 33–75 % of grid cells and wet-stress intensification over 24–61 %. In contrast, ERA5-Land and GLDAS-CLSM depict drying, with negative SM trends over ∼47–51 % of grids, drought intensification across 42–45 %, and declining wet stress in 30–40 %. ERA5-Land exhibits the strongest agreement with in situ data (median Spearman ρ = 0.45–0.48) and reliably captures benchmark extremes such as the 1998 Yangtze flood and the 2022 drought. MERRA-2 best matches SMAP-L4 (Pearson r > 0.76 nationwide) but underrepresents persistent droughts. Collectively, these findings establish ERA5-Land as the most reliable long-term benchmark for trend analysis, while underscoring the comparative advantage of MERRA-2 for short-term anomaly detection. Significant discrepancies in transitional and irrigated zones (e.g., the Loess Plateau and Huang–Huai–Hai Plain) underscore the need for climate- and region-specific fusion strategies.
长时间序列再分析和基于模型的土壤水分产品用于农业土壤水分压力监测的可靠性如何?来自中国五数据集评估的见解
可靠的土壤湿度(SM)信息是农业水资源管理的基础,但在SM产品如何长期捕捉极端水文气候方面仍存在很大的不确定性。我们系统地评估了中国1982-2022年5个广泛使用的数据集——era5 - land(土地再分析)、GLEAM4(卫星驱动的水平衡)、GLDAS-Noah和GLDAS-CLSM(陆地表面模型)以及MERRA-2(大气再分析)。利用现场观测、SMAP-L4卫星数据和极端干旱和洪水的历史记录,我们评估了与地面网络的可靠性(Spearman ρ)、产品间的一致性(Spearman ρ)以及与SMAP-L4的空间一致性(Pearson r)。使用Theil-Sen估计器和无趋势预美白Mann-Kendall检验对长期趋势进行量化。结果显示产品之间存在一致的差异。MERRA-2、GLDAS-Noah和GLEAM4显示了广泛的润湿,在33 - 75% %的网格细胞中呈现正的SM趋势,在24 - 61% %的网格细胞中湿应力加剧。相比之下,ERA5-Land和GLDAS-CLSM描述了干旱,在~ 47-51 %的网格中呈现负SM趋势,在42-45 %的网格中干旱加剧,在30-40 %的网格中湿应力下降。ERA5-Land与原位数据最吻合(Spearman ρ中值= 0.45-0.48),可靠地捕获了1998年长江洪水和2022年干旱等基准极端事件。MERRA-2最符合SMAP-L4 (Pearson r >; 0.76全国),但对持续干旱的反映不足。总的来说,这些发现确立了ERA5-Land作为趋势分析最可靠的长期基准,同时强调了MERRA-2在短期异常检测方面的相对优势。过渡带和灌溉区(如黄土高原和黄淮海平原)的显著差异强调了气候和区域特定融合战略的必要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Agricultural Water Management
Agricultural Water Management 农林科学-农艺学
CiteScore
12.10
自引率
14.90%
发文量
648
审稿时长
4.9 months
期刊介绍: Agricultural Water Management publishes papers of international significance relating to the science, economics, and policy of agricultural water management. In all cases, manuscripts must address implications and provide insight regarding agricultural water management.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信