Ideal approximation theory in extriangulated categories

IF 0.8 2区 数学 Q2 MATHEMATICS
R.R. Xu , X.H. Fu , B.J. Gao , M.Y. Sun
{"title":"Ideal approximation theory in extriangulated categories","authors":"R.R. Xu ,&nbsp;X.H. Fu ,&nbsp;B.J. Gao ,&nbsp;M.Y. Sun","doi":"10.1016/j.jalgebra.2025.08.035","DOIUrl":null,"url":null,"abstract":"<div><div>In the present article, ideal approximation theory is introduced in extriangulated categories. To this end, Salce's Lemma, Christensen's Lemma, and Wakamatsu's Lemma are introduced and proved in an extriangulated category. It is also shown that a finite intersection of special precovering (respectively, special preenveloping) ideals remains special precovering (respectively, special preenveloping). The results in this article show that extriangulated categories are the appropriate context for developing ideal approximation theory.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 446-476"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002186932500523X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In the present article, ideal approximation theory is introduced in extriangulated categories. To this end, Salce's Lemma, Christensen's Lemma, and Wakamatsu's Lemma are introduced and proved in an extriangulated category. It is also shown that a finite intersection of special precovering (respectively, special preenveloping) ideals remains special precovering (respectively, special preenveloping). The results in this article show that extriangulated categories are the appropriate context for developing ideal approximation theory.
外三角化范畴的理想逼近理论
本文在外三角化范畴中引入了理想逼近理论。为此,引入了Salce引理、Christensen引理和Wakamatsu引理,并在外三角化范畴中进行了证明。并证明了特殊预覆盖(分别,特殊预包络)理想的有限交仍然是特殊预覆盖(分别,特殊预包络)。本文的结果表明,外三角化范畴是发展理想逼近理论的适当背景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信