Quantum super-symmetries (I): Quantum Grassmann super-algebras and a quantum Deligne-Morgan-Manin de Rham complex

IF 0.8 2区 数学 Q2 MATHEMATICS
Ge Feng , Naihong Hu , Marc Rosso
{"title":"Quantum super-symmetries (I): Quantum Grassmann super-algebras and a quantum Deligne-Morgan-Manin de Rham complex","authors":"Ge Feng ,&nbsp;Naihong Hu ,&nbsp;Marc Rosso","doi":"10.1016/j.jalgebra.2025.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the quantum Manin <span><math><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo></math></span>-superspace <span><math><msubsup><mrow><mi>A</mi></mrow><mrow><mi>q</mi></mrow><mrow><mi>m</mi><mo>|</mo><mi>n</mi></mrow></msubsup></math></span> equipped with a super ⋆-product, and dually, the quantum Grassmann super-algebra <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo></math></span> equipped with the quantum divided power super-structure. The quantum (restricted) Grassmann superalgebra <span><math><msub><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> and its Manin dual <span><math><msubsup><mrow><mi>Ω</mi></mrow><mrow><mi>q</mi></mrow><mrow><mo>!</mo></mrow></msubsup></math></span> are made into <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>-module superalgebras, either for <em>q</em> generic, or for <em>q</em> root of unity, via quantum (super) differential operators. We give an explicit realization model for certain simple <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>gl</mi></mrow><mo>(</mo><mi>m</mi><mo>|</mo><mi>n</mi><mo>)</mo><mo>)</mo></math></span>-modules and their dimension-formulae, and construct a quantum super de Rham cochain complex of infinite length, which is a quantized version of a classical analogue due to Manin, Deligne-Morgan in the framework of super-symmetry on supermanifolds in gauge field theory.</div></div>","PeriodicalId":14888,"journal":{"name":"Journal of Algebra","volume":"687 ","pages":"Pages 492-531"},"PeriodicalIF":0.8000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869325005344","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We introduce the quantum Manin (m|n)-superspace Aqm|n equipped with a super ⋆-product, and dually, the quantum Grassmann super-algebra Ωq(m|n) equipped with the quantum divided power super-structure. The quantum (restricted) Grassmann superalgebra Ωq and its Manin dual Ωq! are made into Uq(gl(m|n))-module superalgebras, either for q generic, or for q root of unity, via quantum (super) differential operators. We give an explicit realization model for certain simple Uq(gl(m|n))-modules and their dimension-formulae, and construct a quantum super de Rham cochain complex of infinite length, which is a quantized version of a classical analogue due to Manin, Deligne-Morgan in the framework of super-symmetry on supermanifolds in gauge field theory.
量子超对称(I):量子Grassmann超代数和量子delign - morgan - manin de Rham复合体
我们引入了具有超级-积的量子Manin (m bbbbn)-超空间Aqm|n,对偶地引入了具有量子分幂超结构的量子Grassmann超代数Ωq(m|n)。量子(受限)Grassmann超代数Ωq及其Manin对偶Ωq!通过量子(超)微分算子,得到q泛型或q单位根的Uq(gl(m|n))模超代数。给出了若干简单Uq(gl(m|n))模的显式实现模型及其维数公式,构造了一个无限长的量子超de Rham协链复形,它是规范场论超流形超对称框架下基于Manin, delign - morgan的经典类比的量子化版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Algebra
Journal of Algebra 数学-数学
CiteScore
1.50
自引率
22.20%
发文量
414
审稿时长
2-4 weeks
期刊介绍: The Journal of Algebra is a leading international journal and publishes papers that demonstrate high quality research results in algebra and related computational aspects. Only the very best and most interesting papers are to be considered for publication in the journal. With this in mind, it is important that the contribution offer a substantial result that will have a lasting effect upon the field. The journal also seeks work that presents innovative techniques that offer promising results for future research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信