E A Lohith , S. Ravikumar , K. Keerthi , S. Ponnusamy , Sada Venkateswarlu , K. Siva Kumar , N.V.V. Jyothi
{"title":"DFT study on thermodynamic properties of liquid mixtures containing cyclohexanol with aniline and chloro-substituted anilines","authors":"E A Lohith , S. Ravikumar , K. Keerthi , S. Ponnusamy , Sada Venkateswarlu , K. Siva Kumar , N.V.V. Jyothi","doi":"10.1016/j.cjche.2025.02.035","DOIUrl":null,"url":null,"abstract":"<div><div>Density (<em>ρ</em>) and speed of sound (<em>u</em>) findings on the binary liquid mixtures consisting of cyclohexanol (CH—OH), with aniline (A), <em>ortho</em>-chloroaniline (<em>o</em>-CA), and <em>meta</em>-chloroaniline (<em>m</em>-CA) were gathered at the various temperatures spanning the entire concentration range. 303.15, 308.15,313.15 and 318.15 K at atmospheric pressure. The information measured there was utilized to compute excess molar volume (<span><math><mrow><msubsup><mi>V</mi><mi>m</mi><mi>E</mi></msubsup></mrow></math></span>), excess isentropic compressibility (<span><math><mrow><msubsup><mi>K</mi><mi>S</mi><mi>E</mi></msubsup></mrow></math></span>), excess of speed of sound (<em>u</em><sup>E</sup>), excess intermolecular free length (<span><math><mrow><msubsup><mi>L</mi><mi>f</mi><mi>E</mi></msubsup></mrow></math></span>) and excess acoustic impedance (<em>Z</em><sup>E</sup>). Further, the partial molar volumes (<span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>m</mi><mo>,</mo><mn>1</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>. <span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>1</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>. <span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>m</mi><mo>,</mo><mn>2</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>. <span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>2</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>), partial molar compressibilities (<span><math><mrow><msubsup><mi>K</mi><mrow><mi>m</mi><mo>,</mo><mn>1</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mover><mi>K</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>1</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mover><mi>K</mi><mo>¯</mo></mover><mrow><mi>m</mi><mo>,</mo><mn>2</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mover><mi>K</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>2</mn></mrow><mo>∘</mo></msubsup></mrow></math></span>) and their excess values (<span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>m</mi><mo>,</mo><mn>1</mn></mrow><mi>E</mi></msubsup></mrow></math></span>. <span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>1</mn></mrow><mrow><mo>°</mo><mi>E</mi></mrow></msubsup></mrow></math></span>. <span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>m</mi><mo>,</mo><mn>2</mn></mrow><mi>E</mi></msubsup></mrow></math></span>. <span><math><mrow><msubsup><mover><mi>V</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>2</mn></mrow><mrow><mo>°</mo><mi>E</mi></mrow></msubsup></mrow></math></span>), (<span><math><mrow><msubsup><mover><mi>K</mi><mo>¯</mo></mover><mrow><mi>m</mi><mo>,</mo><mn>1</mn></mrow><mi>E</mi></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mover><mi>K</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>1</mn></mrow><mrow><mo>°</mo><mi>E</mi></mrow></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mover><mi>K</mi><mo>¯</mo></mover><mrow><mi>m</mi><mo>,</mo><mn>2</mn></mrow><mi>E</mi></msubsup></mrow></math></span>, <span><math><mrow><msubsup><mover><mi>K</mi><mo>¯</mo></mover><mrow><mi>ϕ</mi><mo>,</mo><mn>2</mn></mrow><mrow><mo>°</mo><mi>E</mi></mrow></msubsup></mrow></math></span>) were also computed to perceive more information on molecular interaction and structural effects in these mixtures. Applying the theory of Prigogine−Flory−Patterson (PFP) as a framework, the <span><math><mrow><msubsup><mi>V</mi><mi>m</mi><mi>E</mi></msubsup></mrow></math></span> data of the current liquid mixtures were examined. The analysis of the experimental data took into consideration the interactions that occur between the individual molecules that make up liquid mixtures. By using density functional theory DFT (B3LYP) of 6-31 ++ G (d,P) to analyze the geometries, bond characteristics, interaction energies, and hydrogen bonded complexes in organic solvent phase, quantum chemical calculations were able to further confirm the hydrogen bonding that predominates between cyclohexanol with aniline and chlorosubstituted anilines.</div></div>","PeriodicalId":9966,"journal":{"name":"Chinese Journal of Chemical Engineering","volume":"85 ","pages":"Pages 378-392"},"PeriodicalIF":3.7000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1004954125001764","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Density (ρ) and speed of sound (u) findings on the binary liquid mixtures consisting of cyclohexanol (CH—OH), with aniline (A), ortho-chloroaniline (o-CA), and meta-chloroaniline (m-CA) were gathered at the various temperatures spanning the entire concentration range. 303.15, 308.15,313.15 and 318.15 K at atmospheric pressure. The information measured there was utilized to compute excess molar volume (), excess isentropic compressibility (), excess of speed of sound (uE), excess intermolecular free length () and excess acoustic impedance (ZE). Further, the partial molar volumes (. . . ), partial molar compressibilities (, , , ) and their excess values (. . . ), (, , , ) were also computed to perceive more information on molecular interaction and structural effects in these mixtures. Applying the theory of Prigogine−Flory−Patterson (PFP) as a framework, the data of the current liquid mixtures were examined. The analysis of the experimental data took into consideration the interactions that occur between the individual molecules that make up liquid mixtures. By using density functional theory DFT (B3LYP) of 6-31 ++ G (d,P) to analyze the geometries, bond characteristics, interaction energies, and hydrogen bonded complexes in organic solvent phase, quantum chemical calculations were able to further confirm the hydrogen bonding that predominates between cyclohexanol with aniline and chlorosubstituted anilines.
期刊介绍:
The Chinese Journal of Chemical Engineering (Monthly, started in 1982) is the official journal of the Chemical Industry and Engineering Society of China and published by the Chemical Industry Press Co. Ltd. The aim of the journal is to develop the international exchange of scientific and technical information in the field of chemical engineering. It publishes original research papers that cover the major advancements and achievements in chemical engineering in China as well as some articles from overseas contributors.
The topics of journal include chemical engineering, chemical technology, biochemical engineering, energy and environmental engineering and other relevant fields. Papers are published on the basis of their relevance to theoretical research, practical application or potential uses in the industry as Research Papers, Communications, Reviews and Perspectives. Prominent domestic and overseas chemical experts and scholars have been invited to form an International Advisory Board and the Editorial Committee. It enjoys recognition among Chinese academia and industry as a reliable source of information of what is going on in chemical engineering research, both domestic and abroad.