Bio-inspired porous channels for thermal management of lithium-ion batteries: the PorousMorphoGrid approach

IF 10.9 1区 工程技术 Q1 ENERGY & FUELS
Ghazaleh Radman , Afsaneh Mojra , Madjid Soltani , Masoud Ziabasharhagh
{"title":"Bio-inspired porous channels for thermal management of lithium-ion batteries: the PorousMorphoGrid approach","authors":"Ghazaleh Radman ,&nbsp;Afsaneh Mojra ,&nbsp;Madjid Soltani ,&nbsp;Masoud Ziabasharhagh","doi":"10.1016/j.enconman.2025.120550","DOIUrl":null,"url":null,"abstract":"<div><div>Enhancing the lifecycle, performance, and safety of lithium-ion batteries requires efficient thermal management strategies. While liquid cooling systems are widely adopted for their superior efficiency, research on incorporating porous materials into channel designs remains limited. This study introduces the PorousMorphoGrid cooling configuration, a novel bio-inspired channel system that integrates porous media to capitalize on their high surface-to-volume ratio, thereby significantly improving heat transfer. The design mimics Morpho butterfly wings to reduce pressure drop and optimize fluid distribution. A liquid cold plate featuring 12 transverse PorousMorphoGrid channels is investigated for its thermal regulatory potential. To further enhance cooling performance while minimizing operational cost, a multilayer neural network is employed to predict system behavior under varied design and flow conditions. Results demonstrate that the PorousMorphoGrid architecture reduce pressure drop by 16.84 % compared to conventional rectangular channels. Subsequent investigations into partially filled porous channels reveal that filling 33.3 % of the channel length in counter-flow configuration enhances thermal uniformity by 27.2 % relative to fully porous scenario. Optimization analysis identifies a 23.48  mm porous filling length as ideal, achieving a pressure drop of 136.19  Pa while maintaining thermal stability (<span><math><mrow><msub><mi>T</mi><mrow><mi>max</mi></mrow></msub></mrow></math></span> &lt; 27.35 °C; <span><math><mrow><mi>Δ</mi><msub><mi>T</mi><mi>b</mi></msub></mrow></math></span> &lt; 1.8 °C). The proposed PorousMorphoGrid cooling configuration marks a significant advancement in battery thermal management, offering an effective synthesis of bio-inspired design and porous media integration to reduce energy consumption, optimize pressure loss, and promote thermal uniformity.</div></div>","PeriodicalId":11664,"journal":{"name":"Energy Conversion and Management","volume":"347 ","pages":"Article 120550"},"PeriodicalIF":10.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Conversion and Management","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S019689042501074X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Enhancing the lifecycle, performance, and safety of lithium-ion batteries requires efficient thermal management strategies. While liquid cooling systems are widely adopted for their superior efficiency, research on incorporating porous materials into channel designs remains limited. This study introduces the PorousMorphoGrid cooling configuration, a novel bio-inspired channel system that integrates porous media to capitalize on their high surface-to-volume ratio, thereby significantly improving heat transfer. The design mimics Morpho butterfly wings to reduce pressure drop and optimize fluid distribution. A liquid cold plate featuring 12 transverse PorousMorphoGrid channels is investigated for its thermal regulatory potential. To further enhance cooling performance while minimizing operational cost, a multilayer neural network is employed to predict system behavior under varied design and flow conditions. Results demonstrate that the PorousMorphoGrid architecture reduce pressure drop by 16.84 % compared to conventional rectangular channels. Subsequent investigations into partially filled porous channels reveal that filling 33.3 % of the channel length in counter-flow configuration enhances thermal uniformity by 27.2 % relative to fully porous scenario. Optimization analysis identifies a 23.48  mm porous filling length as ideal, achieving a pressure drop of 136.19  Pa while maintaining thermal stability (Tmax < 27.35 °C; ΔTb < 1.8 °C). The proposed PorousMorphoGrid cooling configuration marks a significant advancement in battery thermal management, offering an effective synthesis of bio-inspired design and porous media integration to reduce energy consumption, optimize pressure loss, and promote thermal uniformity.
锂离子电池热管理的仿生多孔通道:PorousMorphoGrid方法
提高锂离子电池的寿命、性能和安全性需要有效的热管理策略。虽然液体冷却系统因其优越的效率而被广泛采用,但将多孔材料纳入通道设计的研究仍然有限。本研究介绍了一种新型的仿生通道系统PorousMorphoGrid冷却配置,该系统集成了多孔介质,利用其高表面体积比,从而显着改善了传热。该设计模仿了Morpho蝴蝶的翅膀,以减少压降并优化流体分布。研究了具有12个横向多孔形态栅格通道的液体冷板的热调节势。为了进一步提高冷却性能,同时最大限度地降低运行成本,采用多层神经网络来预测系统在不同设计和流动条件下的行为。结果表明,与传统的矩形通道相比,PorousMorphoGrid结构的压降降低了16.84%。随后对部分填充的多孔通道的研究表明,在逆流配置中填充33.3%的通道长度,相对于完全多孔的情况,热均匀性提高了27.2%。优化分析确定23.48 mm的孔隙填充长度是理想的,在保持热稳定性(Tmax < 27.35°C; ΔTb < 1.8°C)的情况下,可以实现136.19 Pa的压降。提出的PorousMorphoGrid冷却配置标志着电池热管理的重大进步,提供了生物灵感设计和多孔介质集成的有效综合,以降低能耗,优化压力损失,并促进热均匀性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Energy Conversion and Management
Energy Conversion and Management 工程技术-力学
CiteScore
19.00
自引率
11.50%
发文量
1304
审稿时长
17 days
期刊介绍: The journal Energy Conversion and Management provides a forum for publishing original contributions and comprehensive technical review articles of interdisciplinary and original research on all important energy topics. The topics considered include energy generation, utilization, conversion, storage, transmission, conservation, management and sustainability. These topics typically involve various types of energy such as mechanical, thermal, nuclear, chemical, electromagnetic, magnetic and electric. These energy types cover all known energy resources, including renewable resources (e.g., solar, bio, hydro, wind, geothermal and ocean energy), fossil fuels and nuclear resources.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信