Selective hydrogenation of CO2 to propene-abundant light olefins over ZnZrOx/ultra-small H-SAPO-34 crystals composite

IF 14.9 1区 化学 Q1 Energy
Lu Qin , Qian Zhang , Bo Zhou , Sen Wang , Pengfei Wang , Mei Dong , Tianfu Zhang , Lin Xu , Yu Wang , Ting Fan , Jianguo Wang , Weibin Fan
{"title":"Selective hydrogenation of CO2 to propene-abundant light olefins over ZnZrOx/ultra-small H-SAPO-34 crystals composite","authors":"Lu Qin ,&nbsp;Qian Zhang ,&nbsp;Bo Zhou ,&nbsp;Sen Wang ,&nbsp;Pengfei Wang ,&nbsp;Mei Dong ,&nbsp;Tianfu Zhang ,&nbsp;Lin Xu ,&nbsp;Yu Wang ,&nbsp;Ting Fan ,&nbsp;Jianguo Wang ,&nbsp;Weibin Fan","doi":"10.1016/j.jechem.2025.08.079","DOIUrl":null,"url":null,"abstract":"<div><div>Significant increase of specific target olefin selectivity in CO<sub>2</sub> hydrogenation is not only scientifically interesting but also practically valuable because of the reduction of separation cost. Here, a new composite catalyst is fabricated with surface oxygen vacancy-abundant ZnZrO<em><sub>x</sub></em>(H) solid solution and ultra-small H-SAPO-34(US) molecular sieve crystals. This catalyst shows a propene selectivity in hydrocarbons of 51.2 % that accounts for about 63 % of light olefins, along with a CO<sub>2</sub> conversion of 13.5 %, at 350 °C and 3.0 MPa. A combination of in situ spectroscopy, isotope-labelled experiments, DFT calculations, and AIMD simulations reveals that an increase of surface oxygen vacancies in ZnZrO<em><sub>x</sub></em>(H) induces formation of a coordinatively unsaturated (Zr-O)<sub>n</sub>-Zn-(Ov)<sub>m</sub> configuration, which elevates Zn site electron density and enhances the electronic interaction of Zn-3<em>d</em> and H-1<em>s</em> orbitals. This promotes the H<sub>2</sub> dissociation and facilitates methanol intermediate formation. The ultra-small H-SAPO-34(US) crystals with a size of 100–200 nm effectively suppresses alkenes hydrogenation and subsequent aromatization in the methanol conversion process. As a result, more propene was produced.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 542-552"},"PeriodicalIF":14.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625007405","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Significant increase of specific target olefin selectivity in CO2 hydrogenation is not only scientifically interesting but also practically valuable because of the reduction of separation cost. Here, a new composite catalyst is fabricated with surface oxygen vacancy-abundant ZnZrOx(H) solid solution and ultra-small H-SAPO-34(US) molecular sieve crystals. This catalyst shows a propene selectivity in hydrocarbons of 51.2 % that accounts for about 63 % of light olefins, along with a CO2 conversion of 13.5 %, at 350 °C and 3.0 MPa. A combination of in situ spectroscopy, isotope-labelled experiments, DFT calculations, and AIMD simulations reveals that an increase of surface oxygen vacancies in ZnZrOx(H) induces formation of a coordinatively unsaturated (Zr-O)n-Zn-(Ov)m configuration, which elevates Zn site electron density and enhances the electronic interaction of Zn-3d and H-1s orbitals. This promotes the H2 dissociation and facilitates methanol intermediate formation. The ultra-small H-SAPO-34(US) crystals with a size of 100–200 nm effectively suppresses alkenes hydrogenation and subsequent aromatization in the methanol conversion process. As a result, more propene was produced.

Abstract Image

ZnZrOx/超小H-SAPO-34晶体复合材料上CO2选择性加氢制备富丙烯轻烯烃
在CO2加氢过程中显著提高特定目标烯烃的选择性不仅具有科学意义,而且由于降低分离成本而具有实际应用价值。本文采用表面氧空位丰富的ZnZrOx(H)固溶体和超小的H- sapo -34(US)分子筛晶体制备了一种新型复合催化剂。在350℃、3.0 MPa条件下,该催化剂对占轻烯烃63%的碳氢化合物的丙烯选择性为51.2%,二氧化碳转化率为13.5%。结合原位光谱、同位素标记实验、DFT计算和AIMD模拟表明,ZnZrOx(H)表面氧空位的增加诱导了配位不饱和(Zr-O)n-Zn-(Ov)m构型的形成,从而提高了Zn位电子密度,增强了Zn-3d和H-1s轨道的电子相互作用。这促进了H2的解离,有利于甲醇中间体的形成。尺寸为100-200 nm的超小型H-SAPO-34(US)晶体能有效抑制甲醇转化过程中烯烃的加氢和随后的芳构化。结果,产生了更多的丙烯。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信