Galvanostatic deposition of lithiophilic nanosized LixSn nucleation sides and inorganic-rich@polymer dual layer for anode-free lithium metal batteries

IF 14.9 1区 化学 Q1 Energy
Zehua Zhao , You Seok Kang , Dae Ho Hong , Ja Yun Heo , Jinyoung Joo , Cheol Ung Lee , Hua Li , Gaojun Jiang , Jungho Yoo , Jeong Gil Seo
{"title":"Galvanostatic deposition of lithiophilic nanosized LixSn nucleation sides and inorganic-rich@polymer dual layer for anode-free lithium metal batteries","authors":"Zehua Zhao ,&nbsp;You Seok Kang ,&nbsp;Dae Ho Hong ,&nbsp;Ja Yun Heo ,&nbsp;Jinyoung Joo ,&nbsp;Cheol Ung Lee ,&nbsp;Hua Li ,&nbsp;Gaojun Jiang ,&nbsp;Jungho Yoo ,&nbsp;Jeong Gil Seo","doi":"10.1016/j.jechem.2025.08.077","DOIUrl":null,"url":null,"abstract":"<div><div>Anode-free lithium-metal batteries (AFLMBs) offer high energy density. However, lithium dendrite growth and interfacial instability remain critical obstacles to their commercialization. Here, lithiophilic nanosized (∼5 nm) Li<em><sub>x</sub></em>Sn combined with an inorganic-rich@polymer dual-layer structure was constructed on a Cu current collector, prepared via a galvanostatic process using a dual-lithium salt electrolyte in a Cu||Cu configuration. The polymer outer layer, initiated by Li<em><sub>x</sub></em>Sn, reinforces the solid electrolyte interphase (SEI), providing mechanical robustness and enabling stable cycling in an ether-based electrolyte. Furthermore, the Sn and Li<em><sub>x</sub></em>Sn particle sizes can be effectively tuned by adjusting the galvanostatic discharge current. The nanosized Li<em><sub>x</sub></em>Sn significantly lowers the nucleation overpotential and creates abundant lithiophilic nucleation sites, resulting in uniform, dense Li plating/stripping. The modified Cu collector demonstrates superior performance in ether-based electrolytes, achieving over 92 % capacity retention after 100 cycles at a current density of 1.5 mA cm<sup>−2</sup> and an area capacity of 1.1 mAh cm<sup>−2</sup>. This work provides a simple, eco-friendly, and scalable approach for fabricating high-performance anode-free current collectors for AFLMBs.</div></div>","PeriodicalId":15728,"journal":{"name":"Journal of Energy Chemistry","volume":"112 ","pages":"Pages 688-700"},"PeriodicalIF":14.9000,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095495625007375","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Energy","Score":null,"Total":0}
引用次数: 0

Abstract

Anode-free lithium-metal batteries (AFLMBs) offer high energy density. However, lithium dendrite growth and interfacial instability remain critical obstacles to their commercialization. Here, lithiophilic nanosized (∼5 nm) LixSn combined with an inorganic-rich@polymer dual-layer structure was constructed on a Cu current collector, prepared via a galvanostatic process using a dual-lithium salt electrolyte in a Cu||Cu configuration. The polymer outer layer, initiated by LixSn, reinforces the solid electrolyte interphase (SEI), providing mechanical robustness and enabling stable cycling in an ether-based electrolyte. Furthermore, the Sn and LixSn particle sizes can be effectively tuned by adjusting the galvanostatic discharge current. The nanosized LixSn significantly lowers the nucleation overpotential and creates abundant lithiophilic nucleation sites, resulting in uniform, dense Li plating/stripping. The modified Cu collector demonstrates superior performance in ether-based electrolytes, achieving over 92 % capacity retention after 100 cycles at a current density of 1.5 mA cm−2 and an area capacity of 1.1 mAh cm−2. This work provides a simple, eco-friendly, and scalable approach for fabricating high-performance anode-free current collectors for AFLMBs.

Abstract Image

无阳极锂金属电池中亲锂纳米级LixSn成核侧和inorganic-rich@polymer双层的恒流沉积
无阳极锂金属电池(aflmb)提供高能量密度。然而,锂枝晶生长和界面不稳定性仍然是其商业化的关键障碍。在这里,亲锂纳米(~ 5 nm) LixSn与inorganic-rich@polymer双层结构结合在Cu集热器上,通过恒流工艺在Cu||Cu结构中使用双锂盐电解质制备。由LixSn引发的聚合物外层增强了固体电解质界面(SEI),提供了机械稳稳性,并实现了醚基电解质的稳定循环。此外,通过调节恒流放电电流可以有效地调节Sn和LixSn的粒径。纳米级的LixSn显著降低了成核过电位,并产生了丰富的亲锂成核位点,从而实现了均匀、致密的锂电镀/剥离。改进的Cu集电极在醚基电解质中表现出优异的性能,在1.5 mA cm - 2的电流密度和1.1 mAh cm - 2的面积容量下,经过100次循环后,其容量保持率超过92%。这项工作为制造用于aflmb的高性能无阳极集流器提供了一种简单、环保和可扩展的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Energy Chemistry
Journal of Energy Chemistry CHEMISTRY, APPLIED-CHEMISTRY, PHYSICAL
CiteScore
19.10
自引率
8.40%
发文量
3631
审稿时长
15 days
期刊介绍: The Journal of Energy Chemistry, the official publication of Science Press and the Dalian Institute of Chemical Physics, Chinese Academy of Sciences, serves as a platform for reporting creative research and innovative applications in energy chemistry. It mainly reports on creative researches and innovative applications of chemical conversions of fossil energy, carbon dioxide, electrochemical energy and hydrogen energy, as well as the conversions of biomass and solar energy related with chemical issues to promote academic exchanges in the field of energy chemistry and to accelerate the exploration, research and development of energy science and technologies. This journal focuses on original research papers covering various topics within energy chemistry worldwide, including: Optimized utilization of fossil energy Hydrogen energy Conversion and storage of electrochemical energy Capture, storage, and chemical conversion of carbon dioxide Materials and nanotechnologies for energy conversion and storage Chemistry in biomass conversion Chemistry in the utilization of solar energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信