3D CoMoO4/NiCo2Se4 networks: Micro-nano confinement effects for enhanced pseudocapacitance and water splitting

IF 7.9 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Yi-Fei Di , Nan Bu , Jia Li , Jun Xiang , Xin Kang , Dong-Mei Ma , Yi-Bo Wang , Rong-Da Zhao , Fu-Fa Wu
{"title":"3D CoMoO4/NiCo2Se4 networks: Micro-nano confinement effects for enhanced pseudocapacitance and water splitting","authors":"Yi-Fei Di ,&nbsp;Nan Bu ,&nbsp;Jia Li ,&nbsp;Jun Xiang ,&nbsp;Xin Kang ,&nbsp;Dong-Mei Ma ,&nbsp;Yi-Bo Wang ,&nbsp;Rong-Da Zhao ,&nbsp;Fu-Fa Wu","doi":"10.1016/j.jpowsour.2025.238458","DOIUrl":null,"url":null,"abstract":"<div><div>The CoMoO<sub>4</sub>/NiCo<sub>2</sub>Se<sub>4</sub> nanocomposite, synthesized via hydrothermal and vapor deposition methods, demonstrates exceptional multifunctional performance for energy storage and electrocatalysis. As a supercapacitor electrode, it achieves a high specific capacitance of 6445.7 mF/cm<sup>2</sup> at 1 mA/cm<sup>2</sup> and retains 71.4 % capacitance after 5000 cycles, with an energy density of 753.9 μWh/cm<sup>2</sup> at a power density of 75.7 μW/cm<sup>2</sup>, attributed to the synergistic effects between the CoMoO<sub>4</sub> and the conductive NiCo<sub>2</sub>Se<sub>4</sub>. Furthermore, the material exhibits outstanding bifunctional catalytic activity for alkaline water splitting, delivering low overpotentials of 270.6 mV (oxygen evolution reaction) and 177.3 mV (hydrogen evolution reaction) at 50 and 10 mA/cm<sup>2</sup>, respectively, with Tafel slopes of 131.4 and 131.0 mV/dec. The cell voltage of overall water-splitting is 1.46 V (10 mA/cm<sup>2</sup>) and a high stability performance for 14 h. The CoMoO<sub>4</sub>/NiCo<sub>2</sub>Se<sub>4</sub> not only ensures efficient ion/electron transport but also creates interfacial electronic modulation through heterointerfaces, while the hierarchical nanostructure facilitates electrolyte penetration, collectively advancing energy storage capability, catalytic kinetics, and overall conversion efficiency, thereby underscoring its dual-functional superiority.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"659 ","pages":"Article 238458"},"PeriodicalIF":7.9000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775325022943","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The CoMoO4/NiCo2Se4 nanocomposite, synthesized via hydrothermal and vapor deposition methods, demonstrates exceptional multifunctional performance for energy storage and electrocatalysis. As a supercapacitor electrode, it achieves a high specific capacitance of 6445.7 mF/cm2 at 1 mA/cm2 and retains 71.4 % capacitance after 5000 cycles, with an energy density of 753.9 μWh/cm2 at a power density of 75.7 μW/cm2, attributed to the synergistic effects between the CoMoO4 and the conductive NiCo2Se4. Furthermore, the material exhibits outstanding bifunctional catalytic activity for alkaline water splitting, delivering low overpotentials of 270.6 mV (oxygen evolution reaction) and 177.3 mV (hydrogen evolution reaction) at 50 and 10 mA/cm2, respectively, with Tafel slopes of 131.4 and 131.0 mV/dec. The cell voltage of overall water-splitting is 1.46 V (10 mA/cm2) and a high stability performance for 14 h. The CoMoO4/NiCo2Se4 not only ensures efficient ion/electron transport but also creates interfacial electronic modulation through heterointerfaces, while the hierarchical nanostructure facilitates electrolyte penetration, collectively advancing energy storage capability, catalytic kinetics, and overall conversion efficiency, thereby underscoring its dual-functional superiority.
三维CoMoO4/NiCo2Se4网络:增强赝电容和水分裂的微纳约束效应
通过水热法和气相沉积法合成的CoMoO4/NiCo2Se4纳米复合材料在储能和电催化方面具有优异的多功能性能。由于CoMoO4与导电NiCo2Se4之间的协同作用,在1 mA/cm2下,CoMoO4具有6445.7 mF/cm2的高比电容,在5000次循环后仍保持71.4%的电容,在75.7 μW/cm2的功率密度下,CoMoO4的能量密度为753.9 μWh/cm2。此外,该材料在碱性水分解中表现出出色的双功能催化活性,在50和10 mA/cm2下,其过电位分别为270.6 mV(析氧反应)和177.3 mV(析氢反应),Tafel斜率为131.4和131.0 mV/dec。整体水分解的电池电压为1.46 V (10 mA/cm2),具有14小时的高稳定性。CoMoO4/NiCo2Se4不仅保证了高效的离子/电子传输,还通过异质界面产生了界面电子调制,而分层纳米结构促进了电解质的渗透,共同提高了储能能力、催化动力学和整体转化效率,从而突出了其双功能优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信