Dual built-in electric field engineering in heterostructure nickel-cobalt bimetallic composites for boosted electromagnetic energy dissipation

Jin Liang , Siying Zhu , Dewei Chen , Yinjun Li , Dong Zhou , Nan Meng , Yaozu Liao , Hanxu Sun , Jie Kong
{"title":"Dual built-in electric field engineering in heterostructure nickel-cobalt bimetallic composites for boosted electromagnetic energy dissipation","authors":"Jin Liang ,&nbsp;Siying Zhu ,&nbsp;Dewei Chen ,&nbsp;Yinjun Li ,&nbsp;Dong Zhou ,&nbsp;Nan Meng ,&nbsp;Yaozu Liao ,&nbsp;Hanxu Sun ,&nbsp;Jie Kong","doi":"10.1016/j.apmate.2025.100344","DOIUrl":null,"url":null,"abstract":"<div><div>Built-in electric fields (BIEF), engineered via space charge manipulation, represent an effective strategy for enhance electromagnetic loss. However, single BIEF fail to reconcile the impedance matching and strong electromagnetic attenuation across broad frequency spectra, resulting in limited effective absorption bandwidth (EAB). To address this, dual-BIEF are constructed utilizing an asymmetric gradient electric field structure and multi-polarization center coordination to achieve high-efficiency broad EAB. Herein, heterostructure Ni-Co bimetallic nanocomposites (Ni<sub>0.5</sub>Co<sub>0.5</sub>@NiCoO<sub>2</sub>/NCP) are constructed via Ni-Co-based nanocomposites (NiCoO<sub>2</sub> and Ni<sub>0.5</sub>Co<sub>0.5</sub>) integrated with nitrogen-doped nanoporous carbon (NCP). This configuration forms dual heterojunctions the NCP-NiCoO<sub>2</sub>-semiconductor heterojunction and the NiCoO<sub>2</sub>-Ni<sub>0.5</sub>Co<sub>0.5</sub> Mott-Schottky heterojunction—forming the dual-BIEF system. The superposed dual-BIEF drives charge-pumping dynamics facilitating oriented transfer and transition of charges that strengthen interfacial polarization and reduced relaxation times. Theoretical calculations confirm this system simultaneously modulates conductivity, intensifies polarization relaxation, promotes charge separation, and optimizes dipole distribution. Dielectric loss from semiconductor junctions dominates the low-frequency regime, while conductive loss via Mott-Schottky junctions prevails at high frequencies. Thus, the Ni<sub>0.5</sub>Co<sub>0.5</sub>@NiCoO<sub>2</sub>/NCP achieves excellent microwave absorption with a remarkable minimum reflection loss of −51.5 ​dB, and an EAB of 6.4 ​GHz at 2.8 ​mm thickness. This work establishes a dual-BIEF strategy for effectively engineering high-performance electromagnetic wave absorption materials.</div></div>","PeriodicalId":7283,"journal":{"name":"Advanced Powder Materials","volume":"4 6","pages":"Article 100344"},"PeriodicalIF":0.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Powder Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772834X25000806","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Built-in electric fields (BIEF), engineered via space charge manipulation, represent an effective strategy for enhance electromagnetic loss. However, single BIEF fail to reconcile the impedance matching and strong electromagnetic attenuation across broad frequency spectra, resulting in limited effective absorption bandwidth (EAB). To address this, dual-BIEF are constructed utilizing an asymmetric gradient electric field structure and multi-polarization center coordination to achieve high-efficiency broad EAB. Herein, heterostructure Ni-Co bimetallic nanocomposites (Ni0.5Co0.5@NiCoO2/NCP) are constructed via Ni-Co-based nanocomposites (NiCoO2 and Ni0.5Co0.5) integrated with nitrogen-doped nanoporous carbon (NCP). This configuration forms dual heterojunctions the NCP-NiCoO2-semiconductor heterojunction and the NiCoO2-Ni0.5Co0.5 Mott-Schottky heterojunction—forming the dual-BIEF system. The superposed dual-BIEF drives charge-pumping dynamics facilitating oriented transfer and transition of charges that strengthen interfacial polarization and reduced relaxation times. Theoretical calculations confirm this system simultaneously modulates conductivity, intensifies polarization relaxation, promotes charge separation, and optimizes dipole distribution. Dielectric loss from semiconductor junctions dominates the low-frequency regime, while conductive loss via Mott-Schottky junctions prevails at high frequencies. Thus, the Ni0.5Co0.5@NiCoO2/NCP achieves excellent microwave absorption with a remarkable minimum reflection loss of −51.5 ​dB, and an EAB of 6.4 ​GHz at 2.8 ​mm thickness. This work establishes a dual-BIEF strategy for effectively engineering high-performance electromagnetic wave absorption materials.

Abstract Image

异质结构镍钴双金属复合材料增强电磁能量耗散的双内置电场工程
通过空间电荷操纵设计的内置电场(BIEF)是增强电磁损耗的有效策略。然而,单一BIEF不能很好地协调阻抗匹配和较强的电磁衰减,导致有效吸收带宽(EAB)有限。为了解决这一问题,利用不对称梯度电场结构和多极化中心协调构建了双bief,以实现高效的宽EAB。本文通过Ni-Co基纳米复合材料(NiCoO2和Ni0.5Co0.5)与氮掺杂纳米多孔碳(NCP)集成,构建异质结构Ni-Co双金属纳米复合材料(Ni0.5Co0.5@NiCoO2/NCP)。这种结构形成双异质结ncp - nicoo2 -半导体异质结和nicoo2 - ni0.5 - co0.5 Mott-Schottky异质结,形成双bief体系。叠加的双bief驱动电荷抽运动力学,促进电荷定向转移和跃迁,从而增强界面极化并减少弛豫时间。理论计算证实,该系统能同时调节电导率,增强极化弛豫,促进电荷分离,优化偶极子分布。半导体结的介电损耗在低频区占主导地位,而莫特-肖特基结的导电损耗在高频区占主导地位。因此,Ni0.5Co0.5@NiCoO2/NCP实现了出色的微波吸收,最小反射损耗为- 51.5 dB,在2.8 mm厚度下的EAB为6.4 GHz。本工作建立了一种双bief策略,有效地设计高性能电磁波吸收材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
33.30
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信