Living bacteria-loaded antibacterial hydrogel-coated gauze: A revolutionary solution for multi-drug-resistant bacterial infections

IF 10.2 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Minghui Xie , Yang Xue , Wantong Lin , Zibing Jiang , Yichun Chen , Yue Pei , Xu Wu , Xiubin Xu
{"title":"Living bacteria-loaded antibacterial hydrogel-coated gauze: A revolutionary solution for multi-drug-resistant bacterial infections","authors":"Minghui Xie ,&nbsp;Yang Xue ,&nbsp;Wantong Lin ,&nbsp;Zibing Jiang ,&nbsp;Yichun Chen ,&nbsp;Yue Pei ,&nbsp;Xu Wu ,&nbsp;Xiubin Xu","doi":"10.1016/j.mtbio.2025.102337","DOIUrl":null,"url":null,"abstract":"<div><div>Chronic wounds infected by methicillin-resistant <em>Staphylococcus aureus</em> (<em>MRSA</em>) pose critical therapeutic challenges due to the prevalence of multi-drug-resistant (MDR) pathogens. To address this issue, a biocompatible live bacteria-loaded hydrogel-coated gauze (APAG) was developed by integrating an engineering <em>Pseudomonas</em> sp. SC11pLAFR-GFP with an alginate/ε-polylysine-polyacrylamide (Alg/ε-PL-PAAm) double-network hydrogel. The hierarchical hydrogel architecture, achieved through physical entrapment in the Alg/ε-PL core, ensures bacterial viability, while the chemically crosslinked PAAm outer layer regulates metabolite diffusion kinetics, synergistically enhancing therapeutic efficacy. The engineered bacteria hydrogel gauze (SC11@APAG) demonstrated sustained antimicrobial production for more than 48 h through the metabolic activity of the loaded <em>Pseudomonas</em> sp. SC11. This biohybrid not only effectively combats <em>MRSA</em> infection in mice wounds but also enhances wound healing. This “bacterial antagonism” strategy combines the native antimicrobial properties of <em>Pseudomonas</em> sp. with advanced material engineering, establishing a new paradigm for intelligent biomedical textiles in combating antimicrobial resistance.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"35 ","pages":"Article 102337"},"PeriodicalIF":10.2000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590006425009081","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Chronic wounds infected by methicillin-resistant Staphylococcus aureus (MRSA) pose critical therapeutic challenges due to the prevalence of multi-drug-resistant (MDR) pathogens. To address this issue, a biocompatible live bacteria-loaded hydrogel-coated gauze (APAG) was developed by integrating an engineering Pseudomonas sp. SC11pLAFR-GFP with an alginate/ε-polylysine-polyacrylamide (Alg/ε-PL-PAAm) double-network hydrogel. The hierarchical hydrogel architecture, achieved through physical entrapment in the Alg/ε-PL core, ensures bacterial viability, while the chemically crosslinked PAAm outer layer regulates metabolite diffusion kinetics, synergistically enhancing therapeutic efficacy. The engineered bacteria hydrogel gauze (SC11@APAG) demonstrated sustained antimicrobial production for more than 48 h through the metabolic activity of the loaded Pseudomonas sp. SC11. This biohybrid not only effectively combats MRSA infection in mice wounds but also enhances wound healing. This “bacterial antagonism” strategy combines the native antimicrobial properties of Pseudomonas sp. with advanced material engineering, establishing a new paradigm for intelligent biomedical textiles in combating antimicrobial resistance.

Abstract Image

活细菌负载抗菌水凝胶涂层纱布:多重耐药细菌感染的革命性解决方案
耐甲氧西林金黄色葡萄球菌(MRSA)感染的慢性伤口由于多重耐药(MDR)病原体的流行,给治疗带来了重大挑战。为解决这一问题,将工程假单胞菌sp. SC11pLAFR-GFP与海藻酸盐/ε-聚lysine-聚丙烯酰胺(Alg/ε-PL-PAAm)双网状水凝胶相结合,制备了生物相容性活菌负载水凝胶包覆纱布(APAG)。通过在Alg/ε-PL核心的物理包裹实现的分层水凝胶结构确保了细菌的活力,而化学交联的PAAm外层调节代谢物扩散动力学,协同提高治疗效果。通过负载假单胞菌sp. SC11的代谢活性,工程细菌水凝胶纱布(SC11@APAG)显示持续抗菌生产超过48小时。该生物杂交体不仅能有效对抗小鼠伤口的MRSA感染,还能促进伤口愈合。这种“细菌拮抗”策略将假单胞菌的天然抗菌特性与先进的材料工程相结合,建立了智能生物医用纺织品抗抗菌的新范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.30
自引率
4.90%
发文量
303
审稿时长
30 days
期刊介绍: Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信