Yadi Jia , Pinjing He , Fan Lü , Wei Peng , Hua Zhang , Khamphe Phoungthong
{"title":"Upcycling of EVA resin from photovoltaics into supercapacitor material and combustible gas by autogenic pressure pyrolysis","authors":"Yadi Jia , Pinjing He , Fan Lü , Wei Peng , Hua Zhang , Khamphe Phoungthong","doi":"10.1016/j.fuproc.2025.108344","DOIUrl":null,"url":null,"abstract":"<div><div>In response to the growing challenge of photovoltaic waste management, developing sustainable and value-added treatment strategies is imperative. In this study, ethylene-vinyl acetate (EVA) resins sourced from waste photovoltaic modules and virgin materials were utilized for the production of hierarchical porous carbon (HPC) and methane-rich combustible gas via autogenic pressure pyrolysis coupled with KOH activation. Temperature-dependent pyrolysis revealed that 700 °C was the optimal condition, yielding pyrolysis gas with a high methane content (43.39 vol%) and producing graphitized carbon spheres. Subsequent KOH activation generated HPC with a large specific surface area of 765.4 m<sup>2</sup>/g. When applied as a supercapacitor electrode in 6 mol/L KOH electrolyte, the HPC exhibited a high specific capacitance of 152 F/g at 0.2 A/g. Additionally, EVA resins with higher vinyl acetate content and melt index (MI) produced greater amounts of methane and pyrolytic carbon, while the resins with lower MI values showed enhanced reactivity toward chemical activation. This work offers a green and efficient route for the high-value recycling of EVA in PV waste and contributes to the sustainable synthesis of advanced HPC materials for energy storage applications.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"278 ","pages":"Article 108344"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001687","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In response to the growing challenge of photovoltaic waste management, developing sustainable and value-added treatment strategies is imperative. In this study, ethylene-vinyl acetate (EVA) resins sourced from waste photovoltaic modules and virgin materials were utilized for the production of hierarchical porous carbon (HPC) and methane-rich combustible gas via autogenic pressure pyrolysis coupled with KOH activation. Temperature-dependent pyrolysis revealed that 700 °C was the optimal condition, yielding pyrolysis gas with a high methane content (43.39 vol%) and producing graphitized carbon spheres. Subsequent KOH activation generated HPC with a large specific surface area of 765.4 m2/g. When applied as a supercapacitor electrode in 6 mol/L KOH electrolyte, the HPC exhibited a high specific capacitance of 152 F/g at 0.2 A/g. Additionally, EVA resins with higher vinyl acetate content and melt index (MI) produced greater amounts of methane and pyrolytic carbon, while the resins with lower MI values showed enhanced reactivity toward chemical activation. This work offers a green and efficient route for the high-value recycling of EVA in PV waste and contributes to the sustainable synthesis of advanced HPC materials for energy storage applications.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.