{"title":"Analysis of configurations for coupling an active magnetic regenerator with heat exchangers for hydrogen liquefaction","authors":"Angelica Liponi , Mathieu Tenda , Rasmus Bjørk , Umberto Desideri","doi":"10.1016/j.fuproc.2025.108337","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a study of four different configurations for performing the heat exchange between helium—supplied by an active magnetic regenerator (AMR)—and hydrogen in the 82–20 K range for hydrogen liquefaction. We evaluate helium mass flow requirements and analyse the configurations considering both technical and exergetic aspects. Results show a strong influence of the temperature difference of helium at the AMR cold end on the required helium mass flow rate, which ranges from 35 to over 75 times the liquid hydrogen mass flow rate. The exergy efficiency of the cooling stage, not including AMR losses, ranges between 33 % and 49 %. The use of a single AMR causes significant temperature differences between helium and hydrogen in the heat exchangers leading to large exergy losses (representing over 95 % of the overall losses). We finally show that this issue can be overcome using multiple AMR in parallel with increasing cold-end temperatures.</div></div>","PeriodicalId":326,"journal":{"name":"Fuel Processing Technology","volume":"278 ","pages":"Article 108337"},"PeriodicalIF":7.7000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel Processing Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378382025001614","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents a study of four different configurations for performing the heat exchange between helium—supplied by an active magnetic regenerator (AMR)—and hydrogen in the 82–20 K range for hydrogen liquefaction. We evaluate helium mass flow requirements and analyse the configurations considering both technical and exergetic aspects. Results show a strong influence of the temperature difference of helium at the AMR cold end on the required helium mass flow rate, which ranges from 35 to over 75 times the liquid hydrogen mass flow rate. The exergy efficiency of the cooling stage, not including AMR losses, ranges between 33 % and 49 %. The use of a single AMR causes significant temperature differences between helium and hydrogen in the heat exchangers leading to large exergy losses (representing over 95 % of the overall losses). We finally show that this issue can be overcome using multiple AMR in parallel with increasing cold-end temperatures.
期刊介绍:
Fuel Processing Technology (FPT) deals with the scientific and technological aspects of converting fossil and renewable resources to clean fuels, value-added chemicals, fuel-related advanced carbon materials and by-products. In addition to the traditional non-nuclear fossil fuels, biomass and wastes, papers on the integration of renewables such as solar and wind energy and energy storage into the fuel processing processes, as well as papers on the production and conversion of non-carbon-containing fuels such as hydrogen and ammonia, are also welcome. While chemical conversion is emphasized, papers on advanced physical conversion processes are also considered for publication in FPT. Papers on the fundamental aspects of fuel structure and properties will also be considered.