On the applicability of the EDAC method to non-Oberbeck–Boussinesq regimes in buoyancy-driven flows

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kasturi Srikanth , V. Praveen Kumar , T. Jayachandran , A. Sameen , Manjul Sharma
{"title":"On the applicability of the EDAC method to non-Oberbeck–Boussinesq regimes in buoyancy-driven flows","authors":"Kasturi Srikanth ,&nbsp;V. Praveen Kumar ,&nbsp;T. Jayachandran ,&nbsp;A. Sameen ,&nbsp;Manjul Sharma","doi":"10.1016/j.compfluid.2025.106835","DOIUrl":null,"url":null,"abstract":"<div><div>This work presents an extension of the Entropically Damped Artificial Compressibility (EDAC) method to simulate buoyancy-driven flows under Non-Oberbeck–Boussinesq (NOB) conditions, characterized by strong thermophysical property variations. By integrating realistic data from the National Institute of Standards and Technology (NIST) database, the formulation accounts for temperature-dependent density and transport coefficients. A sixth-order compact finite-difference scheme with high-order filtering and Runge–Kutta time integration is used to solve the equations in a Rayleigh–Benard convection configuration for air, water, and steam. Diagnostic quantities such as the central temperature shift, relative Nusselt number, and RMS velocity divergence confirm agreement with existing literature. Despite not enforcing incompressibility explicitly, the method exhibits low divergence errors, even in high density gradient cases like steam. These results demonstrate the accuracy and robustness of EDAC for NOB flows, offering a viable alternative to traditional pressure Poisson solvers.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"302 ","pages":"Article 106835"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025002956","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This work presents an extension of the Entropically Damped Artificial Compressibility (EDAC) method to simulate buoyancy-driven flows under Non-Oberbeck–Boussinesq (NOB) conditions, characterized by strong thermophysical property variations. By integrating realistic data from the National Institute of Standards and Technology (NIST) database, the formulation accounts for temperature-dependent density and transport coefficients. A sixth-order compact finite-difference scheme with high-order filtering and Runge–Kutta time integration is used to solve the equations in a Rayleigh–Benard convection configuration for air, water, and steam. Diagnostic quantities such as the central temperature shift, relative Nusselt number, and RMS velocity divergence confirm agreement with existing literature. Despite not enforcing incompressibility explicitly, the method exhibits low divergence errors, even in high density gradient cases like steam. These results demonstrate the accuracy and robustness of EDAC for NOB flows, offering a viable alternative to traditional pressure Poisson solvers.
关于EDAC方法在浮力驱动流中非oberbeck - boussinesq格式中的适用性
这项工作提出了熵阻尼人工压缩(EDAC)方法的扩展,以模拟非oberbeck - boussinesq (NOB)条件下的浮力驱动流动,其特征是强烈的热物理性质变化。通过整合美国国家标准与技术研究院(NIST)数据库中的实际数据,该公式考虑了温度相关的密度和输运系数。采用高阶滤波和龙格-库塔时间积分的六阶紧致有限差分格式求解了空气、水和蒸汽的瑞利-贝纳德对流方程。诊断量,如中心温度变化,相对努塞尔数和均方根速度散度证实与现有文献一致。尽管没有明确地强制不可压缩性,该方法显示出低发散误差,即使在高密度梯度的情况下,如蒸汽。这些结果证明了EDAC对NOB流体的准确性和鲁棒性,为传统压力泊松求解器提供了可行的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信