ONERA’s CRM WBPN database for machine learning activities, related regression challenge and first results

IF 3 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jacques Peter , Quentin Bennehard , Sébastien Heib , Jean-Luc Hantrais-Gervois , Frédéric Moëns
{"title":"ONERA’s CRM WBPN database for machine learning activities, related regression challenge and first results","authors":"Jacques Peter ,&nbsp;Quentin Bennehard ,&nbsp;Sébastien Heib ,&nbsp;Jean-Luc Hantrais-Gervois ,&nbsp;Frédéric Moëns","doi":"10.1016/j.compfluid.2025.106838","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents a new Computational Fluid Dynamics database, developed at ONERA, to support the advancement of machine learning techniques for aerodynamic field prediction. It contains 468 Reynolds-Averaged Navier–Stokes simulations using the Spalart–Allmaras turbulence model, performed on the NASA/Boeing Common Research Model wing-body-pylon-nacelle configuration. The database spans a wide range of flow conditions, varying Mach number (including transonic regimes), angle of attack (capturing flow separation), and Reynolds number (based on three stagnation pressures, with one setting matching wind tunnel experiments). The numerical quality of the database is assessed, through checking the convergence level of each computation.</div><div>Based on these data, a regression challenge is defined. It consists in predicting the wall distributions of pressure and friction coefficients for unseen aerodynamic conditions. The 468 simulations are split into training and test sets, with the training data made available publicly on the Codabench platform. The paper further evaluates several classical machine learning regressors on this task. Tested pointwise methods include Multilayer Perceptrons, <span><math><mi>λ</mi></math></span>-DNNs, and Decision Trees, while global methods include Multilayer Perceptron, k-Nearest Neighbors, Proper Orthogonal Decomposition and IsoMap. Initial performance results, using <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> scores and largest relative mean absolute error metrics, are presented, offering insights into the capabilities of these techniques for the challenge and references for future work.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"302 ","pages":"Article 106838"},"PeriodicalIF":3.0000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025002981","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a new Computational Fluid Dynamics database, developed at ONERA, to support the advancement of machine learning techniques for aerodynamic field prediction. It contains 468 Reynolds-Averaged Navier–Stokes simulations using the Spalart–Allmaras turbulence model, performed on the NASA/Boeing Common Research Model wing-body-pylon-nacelle configuration. The database spans a wide range of flow conditions, varying Mach number (including transonic regimes), angle of attack (capturing flow separation), and Reynolds number (based on three stagnation pressures, with one setting matching wind tunnel experiments). The numerical quality of the database is assessed, through checking the convergence level of each computation.
Based on these data, a regression challenge is defined. It consists in predicting the wall distributions of pressure and friction coefficients for unseen aerodynamic conditions. The 468 simulations are split into training and test sets, with the training data made available publicly on the Codabench platform. The paper further evaluates several classical machine learning regressors on this task. Tested pointwise methods include Multilayer Perceptrons, λ-DNNs, and Decision Trees, while global methods include Multilayer Perceptron, k-Nearest Neighbors, Proper Orthogonal Decomposition and IsoMap. Initial performance results, using R2 scores and largest relative mean absolute error metrics, are presented, offering insights into the capabilities of these techniques for the challenge and references for future work.
ONERA的CRM WBPN数据库,用于机器学习活动、相关回归挑战和首次结果
本文提出了一个新的计算流体动力学数据库,由ONERA开发,以支持空气动力场预测的机器学习技术的进步。它包含468个reynolds - average Navier-Stokes模拟,使用Spalart-Allmaras湍流模型,在NASA/波音通用研究模型翼-体-挂架-机舱配置上进行。该数据库涵盖了广泛的流动条件,不同的马赫数(包括跨音速状态),攻角(捕获流动分离)和雷诺数(基于三种停滞压力,其中一种设置与风洞实验相匹配)。通过检查每个计算的收敛程度来评估数据库的数值质量。基于这些数据,定义了回归挑战。它包括在未知气动条件下预测压力和摩擦系数的壁面分布。468个模拟被分为训练集和测试集,训练数据在codabbench平台上公开提供。本文进一步评估了几种经典的机器学习回归器。经过测试的点向方法包括多层感知机、λ- dnn和决策树,而全局方法包括多层感知机、k近邻、适当正交分解和IsoMap。给出了使用R2分数和最大相对平均绝对误差度量的初始性能结果,为这些技术的挑战和未来工作提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信