Structure and electrochemical properties of MgAl co-doped spinel LiMn2O4 cathode material

IF 3.3 4区 材料科学 Q3 CHEMISTRY, PHYSICAL
Yongsheng Yang PhD, Long Shi, Junming Guo
{"title":"Structure and electrochemical properties of MgAl co-doped spinel LiMn2O4 cathode material","authors":"Yongsheng Yang PhD,&nbsp;Long Shi,&nbsp;Junming Guo","doi":"10.1016/j.ssi.2025.117031","DOIUrl":null,"url":null,"abstract":"<div><div>Mg<img>Al co-doping and single-crystal truncated octahedral morphology strategy was employed to suppress and mitigate the Jahn-Teller distortion and Mn dissolution in spinel-type LiMn<sub>2</sub>O<sub>4</sub> materials. LiMg<sub>0.10</sub>Al<sub><em>y</em></sub>Mn<sub>1.90-<em>y</em></sub>O<sub>4</sub> (<em>y</em> = 0.03, 0.05, 0.08, 0.10, and 0.12) cathode materials were synthesized via solid-phase combustion method and the effects of varying Al contents on the crystal structures, single-crystal truncated octahedral morphology, valence states of doped elements, rate and long-cycle electrochemical performance, and Li<sup>+</sup> ion migration kinetics of spinel-type LiMn<sub>2</sub>O<sub>4</sub> materials were investigated. The results indicate that Mg<img>Al co-doping promotes the crystalline development of spinel-type LiMn<sub>2</sub>O<sub>4</sub> material and the preferential growth of {111}, {100}, and {110} crystal planes, forming complete single-crystal truncated octahedral morphology. Among samples with different Mg and Al doping levels, the Mg<img>Al co-doped sample LiMg<sub>0.10</sub>Al<sub>0.05</sub>Mn<sub>1.85</sub>O<sub>4</sub> exhibits superior capacity and cycle stability. At a low rate of 1C, the initial discharge specific capacity is 114.7 mAh·g<sup>−1</sup>, with an 93.6 % capacity retention after 200 cycles; at high rates of 10, 15, and 20C, the initial discharge specific capacities are 94.4, 92.4, and 84.5 mAh·g<sup>−1</sup> respectively, with capacity retention rates of 84.1 %, 76.9.2 %, and 81.7 % after 1000 cycles; at high temperatures of 55 °C and rates of 1C, 5C and 10C, the initial discharge specific capacities are 113.7, 111.1 and 100.5 mAh·g<sup>−1</sup> respectively, with retention rates of 68.6 %, 46.1 % and 37.8 % after 200, and 500 cycles. The LiMg<sub>0.10</sub>Al<sub>0.05</sub>Mn<sub>185</sub>O<sub>4</sub> sample has the lowest charge transfer resistance (168.6 Ω) and apparent activation energy (32.39 kJ·mol<sup>−1</sup>), and the highest Li<sup>+</sup> diffusion coefficient (1.20 × 10<sup>−11</sup> cm<sup>2</sup>·s<sup>−1</sup>). This indicates that during charging and discharging, Li<sup>+</sup> ions in this sample encounter lower resistance and energy barriers, resulting in faster migration rates, which can enhance the material's rate capacity and cycling stability.</div></div>","PeriodicalId":431,"journal":{"name":"Solid State Ionics","volume":"431 ","pages":"Article 117031"},"PeriodicalIF":3.3000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Solid State Ionics","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167273825002504","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

MgAl co-doping and single-crystal truncated octahedral morphology strategy was employed to suppress and mitigate the Jahn-Teller distortion and Mn dissolution in spinel-type LiMn2O4 materials. LiMg0.10AlyMn1.90-yO4 (y = 0.03, 0.05, 0.08, 0.10, and 0.12) cathode materials were synthesized via solid-phase combustion method and the effects of varying Al contents on the crystal structures, single-crystal truncated octahedral morphology, valence states of doped elements, rate and long-cycle electrochemical performance, and Li+ ion migration kinetics of spinel-type LiMn2O4 materials were investigated. The results indicate that MgAl co-doping promotes the crystalline development of spinel-type LiMn2O4 material and the preferential growth of {111}, {100}, and {110} crystal planes, forming complete single-crystal truncated octahedral morphology. Among samples with different Mg and Al doping levels, the MgAl co-doped sample LiMg0.10Al0.05Mn1.85O4 exhibits superior capacity and cycle stability. At a low rate of 1C, the initial discharge specific capacity is 114.7 mAh·g−1, with an 93.6 % capacity retention after 200 cycles; at high rates of 10, 15, and 20C, the initial discharge specific capacities are 94.4, 92.4, and 84.5 mAh·g−1 respectively, with capacity retention rates of 84.1 %, 76.9.2 %, and 81.7 % after 1000 cycles; at high temperatures of 55 °C and rates of 1C, 5C and 10C, the initial discharge specific capacities are 113.7, 111.1 and 100.5 mAh·g−1 respectively, with retention rates of 68.6 %, 46.1 % and 37.8 % after 200, and 500 cycles. The LiMg0.10Al0.05Mn185O4 sample has the lowest charge transfer resistance (168.6 Ω) and apparent activation energy (32.39 kJ·mol−1), and the highest Li+ diffusion coefficient (1.20 × 10−11 cm2·s−1). This indicates that during charging and discharging, Li+ ions in this sample encounter lower resistance and energy barriers, resulting in faster migration rates, which can enhance the material's rate capacity and cycling stability.
MgAl共掺尖晶石LiMn2O4正极材料的结构与电化学性能
采用MgAl共掺杂和单晶截断八面体形貌策略抑制和减轻尖晶石型LiMn2O4材料中的Jahn-Teller畸变和Mn溶解。采用固相燃烧法合成了LiMg0.10AlyMn1.90-yO4 (y = 0.03, 0.05, 0.08, 0.10, 0.12)正极材料,研究了Al含量对尖晶石型LiMn2O4材料的晶体结构、单晶截断八面体形态、掺杂元素价态、速率和长周期电化学性能以及Li+离子迁移动力学的影响。结果表明:MgAl共掺杂促进了尖晶石型LiMn2O4材料的结晶发育,{111}、{100}和{110}晶面优先生长,形成完整的单晶截断八面体形貌;在不同Mg和Al掺杂水平的样品中,MgAl共掺杂样品LiMg0.10Al0.05Mn1.85O4表现出优异的容量和循环稳定性。在低倍率1C下,初始放电比容量为114.7 mAh·g−1,200次循环后容量保持率为93.6%;在10、15和20℃高倍率下,初始放电比容量分别为94.4、92.4和84.5 mAh·g−1,1000次循环后容量保持率分别为84.1%、76.9.2%和81.7%;在55°C高温和1C、5C和10C倍率下,电池的初始放电比容量分别为113.7、111.1和100.5 mAh·g−1,循环200次和500次后的保留率分别为68.6%、46.1%和37.8%。LiMg0.10Al0.05Mn185O4样品的电荷转移电阻最低(168.6 Ω),表观活化能最低(32.39 kJ·mol−1),Li+扩散系数最高(1.20 × 10−11 cm2·s−1)。这说明在充放电过程中,该样品中的Li+离子遇到更低的电阻和能量势垒,迁移速度更快,可以增强材料的倍率容量和循环稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Solid State Ionics
Solid State Ionics 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.10%
发文量
152
审稿时长
58 days
期刊介绍: This interdisciplinary journal is devoted to the physics, chemistry and materials science of diffusion, mass transport, and reactivity of solids. The major part of each issue is devoted to articles on: (i) physics and chemistry of defects in solids; (ii) reactions in and on solids, e.g. intercalation, corrosion, oxidation, sintering; (iii) ion transport measurements, mechanisms and theory; (iv) solid state electrochemistry; (v) ionically-electronically mixed conducting solids. Related technological applications are also included, provided their characteristics are interpreted in terms of the basic solid state properties. Review papers and relevant symposium proceedings are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信