{"title":"Mitochondria and tumorigenesis: Molecular basis and therapeutic implications","authors":"Chen Huang , Zichuan Xie , Jiajin Li , Chenliang Zhang","doi":"10.1016/j.gendis.2025.101806","DOIUrl":null,"url":null,"abstract":"<div><div>Mitochondria, vital organelles within cells, govern energy metabolism. They play a pivotal role in maintaining redox homeostasis and are instrumental in the initiation and transmission of cell death signals, along with the synthesis of biological macromolecules. The role of mitochondria in tumor evolution and treatment has recently been the focus of extensive research. Studies indicate that the quality and biogenesis of mitochondria, along with their structure, functions, and macromolecule synthesis relevant to it, are intimately linked to tumorigenesis and the prognostic outcomes of clinical treatments. As such, therapies targeting mitochondria offer promising avenues to augment the efficacy of tumor treatment. We summarized the inherent links between mitochondrial structure, mitochondrial genes, metabolism of mitochondrial-related biological macromolecules, and mitochondria-regulated cell death in relation to tumorigenesis and progression. Furthermore, we reviewed the latest research progress in targeting mitochondria for tumor therapy. This study suggests that targeting mitochondria could open new avenues for developing tumor therapy.</div></div>","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"13 1","pages":"Article 101806"},"PeriodicalIF":9.4000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352304225002958","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Mitochondria, vital organelles within cells, govern energy metabolism. They play a pivotal role in maintaining redox homeostasis and are instrumental in the initiation and transmission of cell death signals, along with the synthesis of biological macromolecules. The role of mitochondria in tumor evolution and treatment has recently been the focus of extensive research. Studies indicate that the quality and biogenesis of mitochondria, along with their structure, functions, and macromolecule synthesis relevant to it, are intimately linked to tumorigenesis and the prognostic outcomes of clinical treatments. As such, therapies targeting mitochondria offer promising avenues to augment the efficacy of tumor treatment. We summarized the inherent links between mitochondrial structure, mitochondrial genes, metabolism of mitochondrial-related biological macromolecules, and mitochondria-regulated cell death in relation to tumorigenesis and progression. Furthermore, we reviewed the latest research progress in targeting mitochondria for tumor therapy. This study suggests that targeting mitochondria could open new avenues for developing tumor therapy.
期刊介绍:
Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch.
Aims and Scopes
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.