{"title":"Entomopathogenic fungi from paddy soils suppress a major insect pest and enhance rice growth under greenhouse conditions","authors":"Noppol Kobmoo , Suchada Mongkolsamrit , Artit Khonsanit , Wasana Noisripoom , Non Sawangkaew , Donnaya Thanakitpipattana , Cattarin Theerawitaya , Suriyan Cha-um , Janet Jennifer Luangsa-ard , Jintana Unartngam","doi":"10.1016/j.biocontrol.2025.105894","DOIUrl":null,"url":null,"abstract":"<div><div>Intensive agrochemical use in rice cultivation poses environmental and health risks, emphasizing the need for sustainable alternatives. The development of biocontrol agents that can simultaneously suppress pests and enhance rice growth and production is particularly needed. In this study, we investigated the functionality of Hypocrealean entomopathogenic fungi (EPF) isolated from paddy soils across Thailand to suppress a major insect pest, the brown planthopper (<em>Nilaparvata lugens</em>) and to promote rice growth. Seventy-five EPF strains were isolated from paddy soils, primarily identified as belonging to <em>Metarhizium</em> and <em>Purpureocillium</em> genera. Two <em>Metarhizium</em> strains (MY13317.02 and MY13317.32), belonging to <em>M. pingshaense</em> sensu lato complex, exhibited strong virulence against <em>N. lugens</em> in vitro and demonstrated high phosphate-solubilizing activity, significantly enhancing rice growth, yield and photosynthetic performance under greenhouse conditions. The findings highlight the promising potential of these <em>Metarhizium</em> strains as multifunctional bioinoculants for sustainable rice agriculture, combining plant growth promotion with biocontrol efficacy.</div></div>","PeriodicalId":8880,"journal":{"name":"Biological Control","volume":"210 ","pages":"Article 105894"},"PeriodicalIF":3.4000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Control","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104996442500204X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Intensive agrochemical use in rice cultivation poses environmental and health risks, emphasizing the need for sustainable alternatives. The development of biocontrol agents that can simultaneously suppress pests and enhance rice growth and production is particularly needed. In this study, we investigated the functionality of Hypocrealean entomopathogenic fungi (EPF) isolated from paddy soils across Thailand to suppress a major insect pest, the brown planthopper (Nilaparvata lugens) and to promote rice growth. Seventy-five EPF strains were isolated from paddy soils, primarily identified as belonging to Metarhizium and Purpureocillium genera. Two Metarhizium strains (MY13317.02 and MY13317.32), belonging to M. pingshaense sensu lato complex, exhibited strong virulence against N. lugens in vitro and demonstrated high phosphate-solubilizing activity, significantly enhancing rice growth, yield and photosynthetic performance under greenhouse conditions. The findings highlight the promising potential of these Metarhizium strains as multifunctional bioinoculants for sustainable rice agriculture, combining plant growth promotion with biocontrol efficacy.
期刊介绍:
Biological control is an environmentally sound and effective means of reducing or mitigating pests and pest effects through the use of natural enemies. The aim of Biological Control is to promote this science and technology through publication of original research articles and reviews of research and theory. The journal devotes a section to reports on biotechnologies dealing with the elucidation and use of genes or gene products for the enhancement of biological control agents.
The journal encompasses biological control of viral, microbial, nematode, insect, mite, weed, and vertebrate pests in agriculture, aquatic, forest, natural resource, stored product, and urban environments. Biological control of arthropod pests of human and domestic animals is also included. Ecological, molecular, and biotechnological approaches to the understanding of biological control are welcome.