Unraveling novel wave structures and modulation instability for the (3+1)-dimensional fifth-order nonlinear Wazwaz equation

IF 6.8 2区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
G.M. Ashry , Hamdy M. Ahmed , K.A. Dib , Ahmed G. Ghallab , Wafaa B. Rabie
{"title":"Unraveling novel wave structures and modulation instability for the (3+1)-dimensional fifth-order nonlinear Wazwaz equation","authors":"G.M. Ashry ,&nbsp;Hamdy M. Ahmed ,&nbsp;K.A. Dib ,&nbsp;Ahmed G. Ghallab ,&nbsp;Wafaa B. Rabie","doi":"10.1016/j.aej.2025.09.034","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a comprehensive investigation of the (3+1)-dimensional fifth-order nonlinear Wazwaz equation (3D-WAZWAZe), addressing its significant role in modeling complex wave phenomena in systems exhibiting strong nonlinearity, high-order dispersion, and multidimensional effects across fluid dynamics, plasma physics, optical fibers, and material science. We employ the improved modified extended tanh-function (IMETF) method – implemented here for the first time for this equation – to derive seven distinct classes of exact analytical solutions: dark solitons (intensity dips on finite backgrounds), singular solitons (unbounded amplitudes at discrete points), singular periodic solutions (combining periodicity with localized singularities), Jacobi elliptic solutions (sn, cn, dn functions), exponential solutions (decaying/growing wave profiles), polynomial solutions (algebraic wave structures), and rational solutions (polynomial ratios). Through detailed graphical representations (2D, 3D, and contour plots) and stability analysis, we demonstrate these solutions’ physical interpretability and identify precise conditions for modulation instability. The work’s novelty lies in developing a full analytical solution framework for the 3D-WAZWAZe, introducing new solution families driven by higher-order dispersion, and providing concrete stability criteria. Our results significantly advance the understanding of higher-dimensional nonlinear waves while offering practical tools for wave control in engineering and astrophysical applications, opening new research directions in nonlinear wave theory.</div></div>","PeriodicalId":7484,"journal":{"name":"alexandria engineering journal","volume":"130 ","pages":"Pages 687-694"},"PeriodicalIF":6.8000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"alexandria engineering journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110016825009974","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study presents a comprehensive investigation of the (3+1)-dimensional fifth-order nonlinear Wazwaz equation (3D-WAZWAZe), addressing its significant role in modeling complex wave phenomena in systems exhibiting strong nonlinearity, high-order dispersion, and multidimensional effects across fluid dynamics, plasma physics, optical fibers, and material science. We employ the improved modified extended tanh-function (IMETF) method – implemented here for the first time for this equation – to derive seven distinct classes of exact analytical solutions: dark solitons (intensity dips on finite backgrounds), singular solitons (unbounded amplitudes at discrete points), singular periodic solutions (combining periodicity with localized singularities), Jacobi elliptic solutions (sn, cn, dn functions), exponential solutions (decaying/growing wave profiles), polynomial solutions (algebraic wave structures), and rational solutions (polynomial ratios). Through detailed graphical representations (2D, 3D, and contour plots) and stability analysis, we demonstrate these solutions’ physical interpretability and identify precise conditions for modulation instability. The work’s novelty lies in developing a full analytical solution framework for the 3D-WAZWAZe, introducing new solution families driven by higher-order dispersion, and providing concrete stability criteria. Our results significantly advance the understanding of higher-dimensional nonlinear waves while offering practical tools for wave control in engineering and astrophysical applications, opening new research directions in nonlinear wave theory.
揭示(3+1)维五阶非线性Wazwaz方程的新波结构和调制不稳定性
本研究对(3+1)维五阶非线性wazwaze方程(3D-WAZWAZe)进行了全面的研究,解决了它在流体动力学、等离子体物理、光纤和材料科学中表现出强非线性、高阶色散和多维效应的系统中复杂波动现象建模中的重要作用。我们采用改进的改进扩展坦函数(IMETF)方法——本文首次对该方程实现——导出了七种不同的精确解析解:暗孤子(有限背景上的强度下降)、奇异孤子(离散点上的无界振幅)、奇异周期解(结合周期性和局部奇点)、Jacobi椭圆解(sn、cn、dn函数)、指数解(衰减/增长波剖面)、多项式解(代数波结构)和有理数解(多项式比)。通过详细的图形表示(2D, 3D和等高线图)和稳定性分析,我们证明了这些解决方案的物理可解释性,并确定了调制不稳定性的精确条件。这项工作的新颖之处在于为3D-WAZWAZe开发了一个完整的分析解决方案框架,引入了由高阶色散驱动的新解决方案家族,并提供了具体的稳定性标准。我们的研究结果大大促进了对高维非线性波的认识,同时为工程和天体物理应用中的波浪控制提供了实用工具,开辟了非线性波理论的新研究方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
alexandria engineering journal
alexandria engineering journal Engineering-General Engineering
CiteScore
11.20
自引率
4.40%
发文量
1015
审稿时长
43 days
期刊介绍: Alexandria Engineering Journal is an international journal devoted to publishing high quality papers in the field of engineering and applied science. Alexandria Engineering Journal is cited in the Engineering Information Services (EIS) and the Chemical Abstracts (CA). The papers published in Alexandria Engineering Journal are grouped into five sections, according to the following classification: • Mechanical, Production, Marine and Textile Engineering • Electrical Engineering, Computer Science and Nuclear Engineering • Civil and Architecture Engineering • Chemical Engineering and Applied Sciences • Environmental Engineering
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信