Unraveling the intrinsic phase evolution mechanisms behind strength and toughness improvements in Y-TZP

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Junhui Luo , Qianwen Wang , Ke Cao , Changxing Zhang , Huwen Ma , Junkai Liu , Li Yang , Yichun Zhou
{"title":"Unraveling the intrinsic phase evolution mechanisms behind strength and toughness improvements in Y-TZP","authors":"Junhui Luo ,&nbsp;Qianwen Wang ,&nbsp;Ke Cao ,&nbsp;Changxing Zhang ,&nbsp;Huwen Ma ,&nbsp;Junkai Liu ,&nbsp;Li Yang ,&nbsp;Yichun Zhou","doi":"10.1016/j.msea.2025.149170","DOIUrl":null,"url":null,"abstract":"<div><div>The simultaneous achievement of high strength and toughness in ceramics remains a pivotal challenge in materials science. This study employs yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) as a model system to unravel a novel synergistic strengthening-toughening mechanism governed by a multi-stage phase transition (T→O→M→M∗ superstructure). We demonstrate that this phase transition pathway enables stepwise strain energy release via an intermediate orthorhombic (O) phase and a resulting superstructure (M∗) through multiscale mechanical characterization methods and theoretical calculations. Remarkably, the material achieves a compressive strength of 4.5 GPa, alongside average flexural strength and fracture toughness of 784 ± 57 MPa and 9.5 ± 0.5 MPa m<sup>1/2</sup>, respectively. First-principle calculations confirm the thermodynamic metastability of the O phase; thus, shear sliding along the [100]<sub>O</sub> planes triggers monoclinic (M) twinning. Meanwhile, residual stress-driven atomic ordering culminates in M∗ superstructure formation. This strain-modulated phase transition mechanism enhances damage tolerance through self-regulated zigzag microstructural coordination and external stress redistribution. Our findings establish a new paradigm for designing advanced ceramics with low volumetric strain coordination, harmonizing ultrahigh strength and toughness at room temperature.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"946 ","pages":"Article 149170"},"PeriodicalIF":7.0000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325013942","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The simultaneous achievement of high strength and toughness in ceramics remains a pivotal challenge in materials science. This study employs yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) as a model system to unravel a novel synergistic strengthening-toughening mechanism governed by a multi-stage phase transition (T→O→M→M∗ superstructure). We demonstrate that this phase transition pathway enables stepwise strain energy release via an intermediate orthorhombic (O) phase and a resulting superstructure (M∗) through multiscale mechanical characterization methods and theoretical calculations. Remarkably, the material achieves a compressive strength of 4.5 GPa, alongside average flexural strength and fracture toughness of 784 ± 57 MPa and 9.5 ± 0.5 MPa m1/2, respectively. First-principle calculations confirm the thermodynamic metastability of the O phase; thus, shear sliding along the [100]O planes triggers monoclinic (M) twinning. Meanwhile, residual stress-driven atomic ordering culminates in M∗ superstructure formation. This strain-modulated phase transition mechanism enhances damage tolerance through self-regulated zigzag microstructural coordination and external stress redistribution. Our findings establish a new paradigm for designing advanced ceramics with low volumetric strain coordination, harmonizing ultrahigh strength and toughness at room temperature.
揭示Y-TZP强度和韧性提高背后的内在相演化机制
同时实现陶瓷的高强度和高韧性仍然是材料科学的关键挑战。本研究采用钇稳定的四方氧化锆多晶(Y-TZP)作为模型体系,揭示了由多阶段相变(T→O→M→M *上层结构)控制的新型协同强化-增韧机制。我们通过多尺度力学表征方法和理论计算证明了这种相变途径能够通过中间正交(O)相和由此产生的上层结构(M *)逐步释放应变能。值得注意的是,该材料的抗压强度为4.5 GPa,平均抗弯强度和断裂韧性分别为784±57 MPa和9.5±0.5 MPa m1/2。第一性原理计算证实了O相的热力学亚稳性;因此,沿[100]O平面的剪切滑动触发单斜(M)孪晶。同时,残余应力驱动的原子有序在M *上层结构形成中达到顶点。这种应变调制相变机制通过自我调节之字形组织协调和外部应力重分布增强了损伤容限。我们的发现为设计具有低体积应变配位,在室温下协调超高强度和韧性的先进陶瓷建立了新的范例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信