{"title":"Finite strain thermoelasticity and the Third Law of thermodynamics","authors":"Javier Bonet , Antonio J. Gil","doi":"10.1016/j.jmps.2025.106372","DOIUrl":null,"url":null,"abstract":"<div><div>This paper shows that commonly used large strain thermoelastic models in which the specific heat coefficient is constant or, at most, changes with temperature, are incompatible with the Third Law of thermodynamics, namely, that “<em>entropy should be zero at the Kelvin state, that is, absolute zero temperature</em>”. In particular, it will be shown that the Third Law implies that the specific heat coefficient must vary with deformation for the coupling between mechanical and thermal effects to take place. In line with this result, a simple analytical constitutive model consistent with the Third Law will be proposed. The model will be based on a multiplicative decomposition of the specific heat into a deformation dependent part and a temperature dependent component. The resulting thermoelastic model complies with the Third Law and, in addition, the necessary convexity conditions that ensure the existence of real wave speeds. It can replicate existing entropic elasticity models for rubber, describe melting and softening behaviour, and converge to the classical relationships for linear thermoelasticity in the small strain regime.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106372"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003461","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper shows that commonly used large strain thermoelastic models in which the specific heat coefficient is constant or, at most, changes with temperature, are incompatible with the Third Law of thermodynamics, namely, that “entropy should be zero at the Kelvin state, that is, absolute zero temperature”. In particular, it will be shown that the Third Law implies that the specific heat coefficient must vary with deformation for the coupling between mechanical and thermal effects to take place. In line with this result, a simple analytical constitutive model consistent with the Third Law will be proposed. The model will be based on a multiplicative decomposition of the specific heat into a deformation dependent part and a temperature dependent component. The resulting thermoelastic model complies with the Third Law and, in addition, the necessary convexity conditions that ensure the existence of real wave speeds. It can replicate existing entropic elasticity models for rubber, describe melting and softening behaviour, and converge to the classical relationships for linear thermoelasticity in the small strain regime.
期刊介绍:
The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics.
The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics.
The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.