Finite strain thermoelasticity and the Third Law of thermodynamics

IF 6 2区 工程技术 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Javier Bonet , Antonio J. Gil
{"title":"Finite strain thermoelasticity and the Third Law of thermodynamics","authors":"Javier Bonet ,&nbsp;Antonio J. Gil","doi":"10.1016/j.jmps.2025.106372","DOIUrl":null,"url":null,"abstract":"<div><div>This paper shows that commonly used large strain thermoelastic models in which the specific heat coefficient is constant or, at most, changes with temperature, are incompatible with the Third Law of thermodynamics, namely, that “<em>entropy should be zero at the Kelvin state, that is, absolute zero temperature</em>”. In particular, it will be shown that the Third Law implies that the specific heat coefficient must vary with deformation for the coupling between mechanical and thermal effects to take place. In line with this result, a simple analytical constitutive model consistent with the Third Law will be proposed. The model will be based on a multiplicative decomposition of the specific heat into a deformation dependent part and a temperature dependent component. The resulting thermoelastic model complies with the Third Law and, in addition, the necessary convexity conditions that ensure the existence of real wave speeds. It can replicate existing entropic elasticity models for rubber, describe melting and softening behaviour, and converge to the classical relationships for linear thermoelasticity in the small strain regime.</div></div>","PeriodicalId":17331,"journal":{"name":"Journal of The Mechanics and Physics of Solids","volume":"206 ","pages":"Article 106372"},"PeriodicalIF":6.0000,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Mechanics and Physics of Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022509625003461","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper shows that commonly used large strain thermoelastic models in which the specific heat coefficient is constant or, at most, changes with temperature, are incompatible with the Third Law of thermodynamics, namely, that “entropy should be zero at the Kelvin state, that is, absolute zero temperature”. In particular, it will be shown that the Third Law implies that the specific heat coefficient must vary with deformation for the coupling between mechanical and thermal effects to take place. In line with this result, a simple analytical constitutive model consistent with the Third Law will be proposed. The model will be based on a multiplicative decomposition of the specific heat into a deformation dependent part and a temperature dependent component. The resulting thermoelastic model complies with the Third Law and, in addition, the necessary convexity conditions that ensure the existence of real wave speeds. It can replicate existing entropic elasticity models for rubber, describe melting and softening behaviour, and converge to the classical relationships for linear thermoelasticity in the small strain regime.
有限应变热弹性和热力学第三定律
本文表明,常用的比热系数恒定或至多随温度变化的大应变热弹性模型不符合热力学第三定律,即“在开尔文状态即绝对零度时熵应为零”。特别是,它将表明,第三定律意味着比热系数必须随变形而变化,以便发生机械效应和热效应之间的耦合。根据这一结果,将提出一个符合第三定律的简单解析本构模型。该模型将基于比热的乘法分解,分解为与变形相关的部分和与温度相关的部分。所得的热弹性模型符合第三定律,并且满足保证实际波速存在的必要凸性条件。它可以复制现有的橡胶熵弹性模型,描述橡胶的融化和软化行为,并收敛于小应变下线性热弹性的经典关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of The Mechanics and Physics of Solids
Journal of The Mechanics and Physics of Solids 物理-材料科学:综合
CiteScore
9.80
自引率
9.40%
发文量
276
审稿时长
52 days
期刊介绍: The aim of Journal of The Mechanics and Physics of Solids is to publish research of the highest quality and of lasting significance on the mechanics of solids. The scope is broad, from fundamental concepts in mechanics to the analysis of novel phenomena and applications. Solids are interpreted broadly to include both hard and soft materials as well as natural and synthetic structures. The approach can be theoretical, experimental or computational.This research activity sits within engineering science and the allied areas of applied mathematics, materials science, bio-mechanics, applied physics, and geophysics. The Journal was founded in 1952 by Rodney Hill, who was its Editor-in-Chief until 1968. The topics of interest to the Journal evolve with developments in the subject but its basic ethos remains the same: to publish research of the highest quality relating to the mechanics of solids. Thus, emphasis is placed on the development of fundamental concepts of mechanics and novel applications of these concepts based on theoretical, experimental or computational approaches, drawing upon the various branches of engineering science and the allied areas within applied mathematics, materials science, structural engineering, applied physics, and geophysics. The main purpose of the Journal is to foster scientific understanding of the processes of deformation and mechanical failure of all solid materials, both technological and natural, and the connections between these processes and their underlying physical mechanisms. In this sense, the content of the Journal should reflect the current state of the discipline in analysis, experimental observation, and numerical simulation. In the interest of achieving this goal, authors are encouraged to consider the significance of their contributions for the field of mechanics and the implications of their results, in addition to describing the details of their work.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信