Geochemical processes and environmental implications of carbon mineralization in basalts: A comprehensive review

IF 10 1区 地球科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY
Shijia Ma , Changyou Xia , Zhihao Gao , Xiaojie Yu , Muxin Liu , Xi Liang
{"title":"Geochemical processes and environmental implications of carbon mineralization in basalts: A comprehensive review","authors":"Shijia Ma ,&nbsp;Changyou Xia ,&nbsp;Zhihao Gao ,&nbsp;Xiaojie Yu ,&nbsp;Muxin Liu ,&nbsp;Xi Liang","doi":"10.1016/j.earscirev.2025.105260","DOIUrl":null,"url":null,"abstract":"<div><div>The growing urgency to mitigate global warming has driven the development of Carbon Capture, Utilization, and Storage (CCUS) technologies. Among these, carbon mineralization in basalt formations offers a permanent and secure pathway for CO<sub>2</sub> storage. This review synthesizes recent advances in carbon mineralization in basalt, emphasizing geochemical mechanisms, fluid-rock interactions, and environmental implications. Two distinct pathways are identified: dissolved CO<sub>2</sub> injection, which produces uniform reaction fronts via bulk transport, and supercritical CO<sub>2</sub> injection, where thin-film interfacial reactions dominate. Fluid chemistry evolution is strongly temperature-dependent, with systematic trends in pH, Ca, Mg, and Fe concentrations, controlling carbonate and clay precipitation. Porosity and permeability changes reflect a dynamic balance between dissolution-driven pore enlargement and precipitation-induced clogging, with field trials generally showing minimal alteration while laboratory studies reveal contrasting outcomes. Reactive transport models highlight the importance of mineralogical heterogeneity, feedbacks, and chemo-mechanical coupling in governing long-term reservoir behaviour. By linking molecular-scale interfacial reactions with continuum-scale hydrodynamics and petrophysical evolution, this review develops an integrated framework for understanding CO<sub>2</sub>-basalt systems and highlights the importance of mechanistic pathways, temperature-dependent fluid chemistry, and porosity-permeability feedbacks, providing new insights for optimizing injection strategies and improving predictive modelling toward large-scale, environmentally safe basalt carbon mineralization.</div></div>","PeriodicalId":11483,"journal":{"name":"Earth-Science Reviews","volume":"271 ","pages":"Article 105260"},"PeriodicalIF":10.0000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth-Science Reviews","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012825225002211","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The growing urgency to mitigate global warming has driven the development of Carbon Capture, Utilization, and Storage (CCUS) technologies. Among these, carbon mineralization in basalt formations offers a permanent and secure pathway for CO2 storage. This review synthesizes recent advances in carbon mineralization in basalt, emphasizing geochemical mechanisms, fluid-rock interactions, and environmental implications. Two distinct pathways are identified: dissolved CO2 injection, which produces uniform reaction fronts via bulk transport, and supercritical CO2 injection, where thin-film interfacial reactions dominate. Fluid chemistry evolution is strongly temperature-dependent, with systematic trends in pH, Ca, Mg, and Fe concentrations, controlling carbonate and clay precipitation. Porosity and permeability changes reflect a dynamic balance between dissolution-driven pore enlargement and precipitation-induced clogging, with field trials generally showing minimal alteration while laboratory studies reveal contrasting outcomes. Reactive transport models highlight the importance of mineralogical heterogeneity, feedbacks, and chemo-mechanical coupling in governing long-term reservoir behaviour. By linking molecular-scale interfacial reactions with continuum-scale hydrodynamics and petrophysical evolution, this review develops an integrated framework for understanding CO2-basalt systems and highlights the importance of mechanistic pathways, temperature-dependent fluid chemistry, and porosity-permeability feedbacks, providing new insights for optimizing injection strategies and improving predictive modelling toward large-scale, environmentally safe basalt carbon mineralization.
玄武岩碳矿化的地球化学过程及其环境意义综述
缓解全球变暖的紧迫性推动了碳捕集、利用和封存(CCUS)技术的发展。其中,玄武岩中的碳矿化为二氧化碳的储存提供了一个永久而安全的途径。本文综述了玄武岩碳矿化研究的最新进展,重点介绍了玄武岩碳矿化的地球化学机制、流体-岩石相互作用及其环境意义。确定了两种不同的途径:溶解CO2注入,通过散装运输产生均匀的反应前沿;超临界CO2注入,薄膜界面反应占主导地位。流体化学演化强烈依赖于温度,具有pH、Ca、Mg和Fe浓度的系统趋势,控制着碳酸盐和粘土的沉淀。孔隙度和渗透率的变化反映了溶解驱动的孔隙扩大和沉淀导致的堵塞之间的动态平衡,现场试验通常显示的变化很小,而实验室研究显示的结果却截然相反。反应输运模型强调了矿物学非均质性、反馈和化学-力学耦合在控制储层长期行为中的重要性。通过将分子尺度的界面反应与连续尺度的流体动力学和岩石物理演化联系起来,本文建立了一个理解二氧化碳-玄武岩系统的综合框架,并强调了机理途径、温度依赖流体化学和孔隙度-渗透率反馈的重要性,为优化注入策略和改进大规模、环境安全的玄武岩碳成矿预测模型提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Earth-Science Reviews
Earth-Science Reviews 地学-地球科学综合
CiteScore
21.70
自引率
5.80%
发文量
294
审稿时长
15.1 weeks
期刊介绍: Covering a much wider field than the usual specialist journals, Earth Science Reviews publishes review articles dealing with all aspects of Earth Sciences, and is an important vehicle for allowing readers to see their particular interest related to the Earth Sciences as a whole.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信