Andrew I. Morrison , Jonas Jäger , Charlotte M. de Winde , Tanja Konijn , Henk P. Roest , Luc J.W. van der Laan , Susan Gibbs , Jasper J. Koning , Reina E. Mebius
{"title":"Integration of lymphatic vasculature to a human lymph node-on-chip enhances physiological immune properties","authors":"Andrew I. Morrison , Jonas Jäger , Charlotte M. de Winde , Tanja Konijn , Henk P. Roest , Luc J.W. van der Laan , Susan Gibbs , Jasper J. Koning , Reina E. Mebius","doi":"10.1016/j.mtbio.2025.102326","DOIUrl":null,"url":null,"abstract":"<div><div>To study systemic human innate and adaptive immune responses in detail, competent <em>in vitro</em> lymph node (LN) models with LN stromal cells (LNSCs) are required to recapitulate the physiological microenvironment. The multicellular organisation of LNs possesses a challenge for designing such microphysiological systems (MPS), particularly with the structural complexity of LNs and the lymphatic vasculature. Here, we established an organotypic LN model with integrated lymphatics in an organ-on-chip (OoC) platform containing a printed sacrificial structure, and studied the influence of a perfused lymphatic endothelial cell (LEC)-lined channel on the LN-on-chip microenvironment. Upon one-week of culture under lymphatic flow, LECs lined the tubular structure forming a lymphatic vessel through the LN model, and stable metabolic conditions within the LN-on-chip were confirmed. Interestingly, LECs in the LN-on-chip displayed the phenotype found in human LNs with upregulation of LEC-specific LN markers, such as atypical chemokine receptor 4 (ACKR4). The presence of the LEC-lined perfused vessel in the LN-on-chip resulted in the increase of native immune cells, most notably B cells, and the secretion of survival and migratory signals, namely interleukin-7 (IL-7) and CC motif chemokine ligand 21 (CCL21). Likewise, LECs promoted the abundance of immune cell clusters closer to the vessel. As such, these features represent an enhanced physiological microenvironment to allow for immune cell migration and interactions for efficient LN functioning. This approach paves the way for LN integration into multi-OoC (MOC) platforms to investigate immunological crosstalk between tissue-derived factors, immune cell trafficking and organ-specific adaptive immune responses.</div></div>","PeriodicalId":18310,"journal":{"name":"Materials Today Bio","volume":"35 ","pages":"Article 102326"},"PeriodicalIF":10.2000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Bio","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S259000642500897X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
To study systemic human innate and adaptive immune responses in detail, competent in vitro lymph node (LN) models with LN stromal cells (LNSCs) are required to recapitulate the physiological microenvironment. The multicellular organisation of LNs possesses a challenge for designing such microphysiological systems (MPS), particularly with the structural complexity of LNs and the lymphatic vasculature. Here, we established an organotypic LN model with integrated lymphatics in an organ-on-chip (OoC) platform containing a printed sacrificial structure, and studied the influence of a perfused lymphatic endothelial cell (LEC)-lined channel on the LN-on-chip microenvironment. Upon one-week of culture under lymphatic flow, LECs lined the tubular structure forming a lymphatic vessel through the LN model, and stable metabolic conditions within the LN-on-chip were confirmed. Interestingly, LECs in the LN-on-chip displayed the phenotype found in human LNs with upregulation of LEC-specific LN markers, such as atypical chemokine receptor 4 (ACKR4). The presence of the LEC-lined perfused vessel in the LN-on-chip resulted in the increase of native immune cells, most notably B cells, and the secretion of survival and migratory signals, namely interleukin-7 (IL-7) and CC motif chemokine ligand 21 (CCL21). Likewise, LECs promoted the abundance of immune cell clusters closer to the vessel. As such, these features represent an enhanced physiological microenvironment to allow for immune cell migration and interactions for efficient LN functioning. This approach paves the way for LN integration into multi-OoC (MOC) platforms to investigate immunological crosstalk between tissue-derived factors, immune cell trafficking and organ-specific adaptive immune responses.
期刊介绍:
Materials Today Bio is a multidisciplinary journal that specializes in the intersection between biology and materials science, chemistry, physics, engineering, and medicine. It covers various aspects such as the design and assembly of new structures, their interaction with biological systems, functionalization, bioimaging, therapies, and diagnostics in healthcare. The journal aims to showcase the most significant advancements and discoveries in this field. As part of the Materials Today family, Materials Today Bio provides rigorous peer review, quick decision-making, and high visibility for authors. It is indexed in Scopus, PubMed Central, Emerging Sources, Citation Index (ESCI), and Directory of Open Access Journals (DOAJ).