Latent diffusion model for quantitative precipitation estimation and forecast at km scale

IF 4.6 2区 环境科学与生态学 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Weidong Li , Baoxiang Pan , Tiejian Li , Congyi Nai , Zhaoxi Li , Jie Chao , Bo Lu , Qingyun Duan , Ming Pan
{"title":"Latent diffusion model for quantitative precipitation estimation and forecast at km scale","authors":"Weidong Li ,&nbsp;Baoxiang Pan ,&nbsp;Tiejian Li ,&nbsp;Congyi Nai ,&nbsp;Zhaoxi Li ,&nbsp;Jie Chao ,&nbsp;Bo Lu ,&nbsp;Qingyun Duan ,&nbsp;Ming Pan","doi":"10.1016/j.envsoft.2025.106701","DOIUrl":null,"url":null,"abstract":"<div><div>Accurate high-resolution precipitation estimation remains a significant challenge in weather prediction due to computational limitations and sub-grid process parameterization difficulties. We present a latent diffusion modeling (LDM) framework that estimates 4 km resolution precipitation using 25 km resolution atmospheric and topographic inputs. The LDM transforms precipitation data into a compact Quasi-Gaussian latent space and progressively refines predictions through neural network-guided diffusion, effectively avoiding common deep learning issues such as mode collapse and blurry artifacts. Compared to traditional numerical models and other deep learning approaches, LDM achieves superior performance with over 30 % reduction in root mean squared error and 40 % improvement in critical success index for extreme events. For the extreme precipitation event (&gt;300 mm/d) in California on October 25, 2021, LDM maintained effective 7-day forecast skill using circulation predictions from a data-driven weather forecasting model. The framework demonstrates significant potential for operational weather prediction applications.</div></div>","PeriodicalId":310,"journal":{"name":"Environmental Modelling & Software","volume":"194 ","pages":"Article 106701"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Modelling & Software","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1364815225003858","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate high-resolution precipitation estimation remains a significant challenge in weather prediction due to computational limitations and sub-grid process parameterization difficulties. We present a latent diffusion modeling (LDM) framework that estimates 4 km resolution precipitation using 25 km resolution atmospheric and topographic inputs. The LDM transforms precipitation data into a compact Quasi-Gaussian latent space and progressively refines predictions through neural network-guided diffusion, effectively avoiding common deep learning issues such as mode collapse and blurry artifacts. Compared to traditional numerical models and other deep learning approaches, LDM achieves superior performance with over 30 % reduction in root mean squared error and 40 % improvement in critical success index for extreme events. For the extreme precipitation event (>300 mm/d) in California on October 25, 2021, LDM maintained effective 7-day forecast skill using circulation predictions from a data-driven weather forecasting model. The framework demonstrates significant potential for operational weather prediction applications.
千米尺度降水定量估计和预报的潜在扩散模式
由于计算的限制和子网格过程参数化的困难,准确的高分辨率降水估计仍然是天气预报中的一个重大挑战。我们提出了一个潜在扩散建模(LDM)框架,该框架使用25公里分辨率的大气和地形输入来估计4公里分辨率的降水。LDM将降水数据转换为紧凑的准高斯潜空间,并通过神经网络引导扩散逐步细化预测,有效避免了常见的深度学习问题,如模式崩溃和模糊伪影。与传统的数值模型和其他深度学习方法相比,LDM的性能更优,极端事件的均方根误差降低了30%以上,关键成功指数提高了40%。对于2021年10月25日发生在加州的极端降水事件(>300 mm/d), LDM利用数据驱动天气预报模型的环流预测保持了有效的7天预报技能。该框架显示了天气预报应用的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmental Modelling & Software
Environmental Modelling & Software 工程技术-工程:环境
CiteScore
9.30
自引率
8.20%
发文量
241
审稿时长
60 days
期刊介绍: Environmental Modelling & Software publishes contributions, in the form of research articles, reviews and short communications, on recent advances in environmental modelling and/or software. The aim is to improve our capacity to represent, understand, predict or manage the behaviour of environmental systems at all practical scales, and to communicate those improvements to a wide scientific and professional audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信