Solutions to SU(n + 1) Toda system generated by spherical metrics

IF 1.6 2区 数学 Q1 MATHEMATICS
Yiqian Shi , Chunhui Wei , Bin Xu
{"title":"Solutions to SU(n + 1) Toda system generated by spherical metrics","authors":"Yiqian Shi ,&nbsp;Chunhui Wei ,&nbsp;Bin Xu","doi":"10.1016/j.jfa.2025.111197","DOIUrl":null,"url":null,"abstract":"<div><div>Following A.B. Givental (1989) <span><span>[5]</span></span>, we refer to an <em>n</em>-tuple <span><math><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of Kähler forms on a Riemann surface <em>S</em> as a <em>solution to the</em> SU<span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> <em>Toda system</em> if and only if<span><span><span><math><mo>(</mo><mrow><mi>Ric</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mi>Ric</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>=</mo><mo>(</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Cartan matrix of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, when <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, this solution corresponds to a spherical metric. Using the correspondence between solutions and totally unramified unitary curves, we show that a spherical metric <em>ω</em> generates a family of solutions, including <span><math><msubsup><mrow><mo>(</mo><mi>i</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo><mi>ω</mi><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Moreover, we characterize this family in terms of the monodromy group of the spherical metric. As a consequence, we obtain a new solution class to the SU<span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> Toda system with cone singularities on compact Riemann surfaces, complementing the existence results of Lin et al. (2020) <span><span>[9]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111197"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003799","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Following A.B. Givental (1989) [5], we refer to an n-tuple (ω1,,ωn) of Kähler forms on a Riemann surface S as a solution to the SU(n+1) Toda system if and only if(Ric(ω1),,Ric(ωn))=(2ω1,,2ωn)Cn, where Cn is the Cartan matrix of type An. In particular, when n=1, this solution corresponds to a spherical metric. Using the correspondence between solutions and totally unramified unitary curves, we show that a spherical metric ω generates a family of solutions, including (i(n+1i)ω)i=1n. Moreover, we characterize this family in terms of the monodromy group of the spherical metric. As a consequence, we obtain a new solution class to the SU(n+1) Toda system with cone singularities on compact Riemann surfaces, complementing the existence results of Lin et al. (2020) [9].
球面度量生成的SU(n + 1)Toda系统的解
根据A.B. Givental(1989)[5],我们在黎曼曲面S上引用Kähler形式的n元组(ω1,…,ωn)作为SU(n+1) Toda系统的解当且仅当(Ric(ω1),…,Ric(ωn))=(2ω1,…,2ωn)Cn,其中Cn是an型的Cartan矩阵。特别地,当n=1时,这个解对应于一个球度规。利用解与完全无分支的酉曲线之间的对应关系,我们证明了一个球面度规ω产生一系列解,包括(i(n+1 - i)ω)i=1n。此外,我们用球度规的单群来描述这个族。因此,我们得到了紧致Riemann曲面上具有锥奇点的SU(n+1) Toda系统的一个新的解类,补充了Lin et al.(2020)[9]的存在性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信