{"title":"Solutions to SU(n + 1) Toda system generated by spherical metrics","authors":"Yiqian Shi , Chunhui Wei , Bin Xu","doi":"10.1016/j.jfa.2025.111197","DOIUrl":null,"url":null,"abstract":"<div><div>Following A.B. Givental (1989) <span><span>[5]</span></span>, we refer to an <em>n</em>-tuple <span><math><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></math></span> of Kähler forms on a Riemann surface <em>S</em> as a <em>solution to the</em> SU<span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> <em>Toda system</em> if and only if<span><span><span><math><mo>(</mo><mrow><mi>Ric</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mrow><mi>Ric</mi></mrow><mo>(</mo><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><mo>)</mo><mo>=</mo><mo>(</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><mo>…</mo><mo>,</mo><mn>2</mn><msub><mrow><mi>ω</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>,</mo></math></span></span></span> where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> is the Cartan matrix of type <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>. In particular, when <span><math><mi>n</mi><mo>=</mo><mn>1</mn></math></span>, this solution corresponds to a spherical metric. Using the correspondence between solutions and totally unramified unitary curves, we show that a spherical metric <em>ω</em> generates a family of solutions, including <span><math><msubsup><mrow><mo>(</mo><mi>i</mi><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>−</mo><mi>i</mi><mo>)</mo><mi>ω</mi><mo>)</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup></math></span>. Moreover, we characterize this family in terms of the monodromy group of the spherical metric. As a consequence, we obtain a new solution class to the SU<span><math><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></math></span> Toda system with cone singularities on compact Riemann surfaces, complementing the existence results of Lin et al. (2020) <span><span>[9]</span></span>.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111197"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003799","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Following A.B. Givental (1989) [5], we refer to an n-tuple of Kähler forms on a Riemann surface S as a solution to the SU Toda system if and only if where is the Cartan matrix of type . In particular, when , this solution corresponds to a spherical metric. Using the correspondence between solutions and totally unramified unitary curves, we show that a spherical metric ω generates a family of solutions, including . Moreover, we characterize this family in terms of the monodromy group of the spherical metric. As a consequence, we obtain a new solution class to the SU Toda system with cone singularities on compact Riemann surfaces, complementing the existence results of Lin et al. (2020) [9].
期刊介绍:
The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published.
Research Areas Include:
• Significant applications of functional analysis, including those to other areas of mathematics
• New developments in functional analysis
• Contributions to important problems in and challenges to functional analysis