Curvature pinching estimate under the Laplacian G2 flow

IF 1.6 2区 数学 Q1 MATHEMATICS
Chuanhuan Li , Yi Li
{"title":"Curvature pinching estimate under the Laplacian G2 flow","authors":"Chuanhuan Li ,&nbsp;Yi Li","doi":"10.1016/j.jfa.2025.111199","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we derive a pinching estimate for the traceless Ricci curvature in terms of scalar curvature and the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the Weyl tensor under the Laplacian <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> flow for closed <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> structures. Then we apply this estimate to study the long time existence of the Laplacian <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> flow and prove that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> norm of the Weyl tensor has to blow up at least at a certain rate under bounded scalar curvature.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111199"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003817","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we derive a pinching estimate for the traceless Ricci curvature in terms of scalar curvature and the C1 norm of the Weyl tensor under the Laplacian G2 flow for closed G2 structures. Then we apply this estimate to study the long time existence of the Laplacian G2 flow and prove that the C1 norm of the Weyl tensor has to blow up at least at a certain rate under bounded scalar curvature.
拉普拉斯G2流下的曲率捏缩估计
本文用标量曲率和闭G2结构下Laplacian G2流下Weyl张量的C1范数,导出了无迹Ricci曲率的捏缩估计。然后应用这一估计研究了拉普拉斯G2流的长时间存在性,证明了Weyl张量的C1范数在有界标量曲率下必须至少以一定的速率爆炸。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信