{"title":"Comparative morphological analysis of electrospun PAN/PVDF nanofibers for waterproof breathable membrane applications","authors":"Wahyu Solafide Sipahutar , Rizky Aflaha , Alex Triputra Lumban Tobing , Tarmizi Taher , Kuwat Triyana , Hutomo Suryo Wasisto , Aldes Lesbani , Aditya Rianjanu","doi":"10.1016/j.cap.2025.09.017","DOIUrl":null,"url":null,"abstract":"<div><div>Waterproof and breathable membranes are critical for protective textiles, filtration, and wearable applications. However, balancing water resistance with vapor permeability remains challenging. This study investigates the morphological effects of electrospun polyacrylonitrile/polyvinylidene fluoride (PAN/PVDF) nanofiber membranes on their waterproofness, breathability, and mechanical integrity. Varying polymer concentration can control fiber diameter (224–1379 nm) and bead formation, influencing membrane properties. Increasing fiber diameter enhances mechanical strength, with Young's modulus rising from 22.5 MPa to 34.1 MPa. All fabricated membranes exhibit excellent waterproofness, while the larger, bead-free fibers possess improved water vapor transmission and slightly reduced air permeability. FTIR analysis confirms consistent chemical composition across samples. These findings demonstrate that nanofiber morphology can be tailored to optimize performance, offering valuable insights for the development of multifunctional membranes for environmental, industrial, and wearable use.</div></div>","PeriodicalId":11037,"journal":{"name":"Current Applied Physics","volume":"80 ","pages":"Pages 224-233"},"PeriodicalIF":3.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Applied Physics","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567173925001968","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Waterproof and breathable membranes are critical for protective textiles, filtration, and wearable applications. However, balancing water resistance with vapor permeability remains challenging. This study investigates the morphological effects of electrospun polyacrylonitrile/polyvinylidene fluoride (PAN/PVDF) nanofiber membranes on their waterproofness, breathability, and mechanical integrity. Varying polymer concentration can control fiber diameter (224–1379 nm) and bead formation, influencing membrane properties. Increasing fiber diameter enhances mechanical strength, with Young's modulus rising from 22.5 MPa to 34.1 MPa. All fabricated membranes exhibit excellent waterproofness, while the larger, bead-free fibers possess improved water vapor transmission and slightly reduced air permeability. FTIR analysis confirms consistent chemical composition across samples. These findings demonstrate that nanofiber morphology can be tailored to optimize performance, offering valuable insights for the development of multifunctional membranes for environmental, industrial, and wearable use.
期刊介绍:
Current Applied Physics (Curr. Appl. Phys.) is a monthly published international journal covering all the fields of applied science investigating the physics of the advanced materials for future applications.
Other areas covered: Experimental and theoretical aspects of advanced materials and devices dealing with synthesis or structural chemistry, physical and electronic properties, photonics, engineering applications, and uniquely pertinent measurement or analytical techniques.
Current Applied Physics, published since 2001, covers physics, chemistry and materials science, including bio-materials, with their engineering aspects. It is a truly interdisciplinary journal opening a forum for scientists of all related fields, a unique point of the journal discriminating it from other worldwide and/or Pacific Rim applied physics journals.
Regular research papers, letters and review articles with contents meeting the scope of the journal will be considered for publication after peer review.
The Journal is owned by the Korean Physical Society.