{"title":"Modeling and analysis on the voltage-mediated flexibility control of a low-voltage DC building energy system","authors":"Zihao Ni , Wei Tan , Yi Jiang , Yi Zhang","doi":"10.1016/j.apenergy.2025.126813","DOIUrl":null,"url":null,"abstract":"<div><div>The use of direct current (DC) bus voltage as a unified control signal for flexibility control has raised significant attention in low-voltage DC building energy systems, with advantages in coordinating diverse flexible resources for demand response. However, while DC bus signaling simplifies system-wide control, existing research lacks clear transient stability boundaries and dynamic interaction models under high flexible load penetration, leading to risks of voltage instability during load or source fluctuations. To bridge this gap, a simulation model of a flexible low-voltage DC (FLVDC) system is developed in MATLAB/Simulink refined to the device level, where the 750 V high-level bus voltage serves as the sole control signal to regulate device operations. The analysis framework tests stability boundaries and transient responses, including overshoot, and settling time of bus voltage and grid power dynamics under source and load steps. Validation through two real-world scenarios demonstrates that the FLVDC system achieves flexible demand response by adjusting device power consumption based on voltage-mediated control. Key findings show that the small-scale scenario features a broader stable voltage range but inferior transient performance compared to the large-scale one with more sources and loads. Droop control is shown to reduce overshoot and settling time, while rigid control provides a fixed reference value without fluctuation with grid power. Under voltage-mediated control, the FLVDC system can provide 309 W/V grid flexibility in small-scale scenario from 550 V to 1020 V and 2309 W/V in large-scale scenario from 650 V to 825 V. The simulation model can provide building operators with a feasible tool to verify system design and optimize control strategies.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"401 ","pages":"Article 126813"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925015430","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
The use of direct current (DC) bus voltage as a unified control signal for flexibility control has raised significant attention in low-voltage DC building energy systems, with advantages in coordinating diverse flexible resources for demand response. However, while DC bus signaling simplifies system-wide control, existing research lacks clear transient stability boundaries and dynamic interaction models under high flexible load penetration, leading to risks of voltage instability during load or source fluctuations. To bridge this gap, a simulation model of a flexible low-voltage DC (FLVDC) system is developed in MATLAB/Simulink refined to the device level, where the 750 V high-level bus voltage serves as the sole control signal to regulate device operations. The analysis framework tests stability boundaries and transient responses, including overshoot, and settling time of bus voltage and grid power dynamics under source and load steps. Validation through two real-world scenarios demonstrates that the FLVDC system achieves flexible demand response by adjusting device power consumption based on voltage-mediated control. Key findings show that the small-scale scenario features a broader stable voltage range but inferior transient performance compared to the large-scale one with more sources and loads. Droop control is shown to reduce overshoot and settling time, while rigid control provides a fixed reference value without fluctuation with grid power. Under voltage-mediated control, the FLVDC system can provide 309 W/V grid flexibility in small-scale scenario from 550 V to 1020 V and 2309 W/V in large-scale scenario from 650 V to 825 V. The simulation model can provide building operators with a feasible tool to verify system design and optimize control strategies.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.