Investigating the effect of iodine treatment on the properties of mesophase pitch based carbon fibers

IF 5.1 3区 材料科学 Q2 MATERIALS SCIENCE, COATINGS & FILMS
Khushboo Kumari , Sonu Rani , Pankaj Kumar , Sanjay R. Dhakate , Saroj Kumari
{"title":"Investigating the effect of iodine treatment on the properties of mesophase pitch based carbon fibers","authors":"Khushboo Kumari ,&nbsp;Sonu Rani ,&nbsp;Pankaj Kumar ,&nbsp;Sanjay R. Dhakate ,&nbsp;Saroj Kumari","doi":"10.1016/j.diamond.2025.112866","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effect of iodine treatment on the microstructure and morphology of inhomogeneous mesophase pitch fibers containing a substantial amount of isotropic fraction to overcome hardships like fusion and brittle texture due to heterogeneity in the pitch. Initially, iodine was incorporated into the pitch fibers at different steps: (1) pitch fibers-oxidation, (2) pitch fibers-iodination, (3) pitch fibers-oxidation-iodination, and (4) pitch fibers-iodination-oxidation. All modified pitch fibers were then carbonized at 1000 °C. The results show that the iodine treatment at different stages significantly affected the properties of carbon fibers, with the best outcome observed when iodination was performed before the oxidation step. However, carbon fibers obtained from oxidized pitch fibers modified with iodine show pores and defects on the surface. Raman, EDAX, EPR, and TGA analyses have been employed to analyze the iodine adsorption on pitch fibers. Furthermore, the exposure time for the iodination of pitch fibers before oxidation was varied to investigate the effect on polymerization in molecules with the iodine curing process. It was observed that 1.5 h exposure of iodine to pitch fiber before stabilization enriches the polymerization reaction and improves the mechanical properties. It results in providing more flexibility and handleability to the resultant carbon fiber.</div></div>","PeriodicalId":11266,"journal":{"name":"Diamond and Related Materials","volume":"159 ","pages":"Article 112866"},"PeriodicalIF":5.1000,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diamond and Related Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925963525009239","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the effect of iodine treatment on the microstructure and morphology of inhomogeneous mesophase pitch fibers containing a substantial amount of isotropic fraction to overcome hardships like fusion and brittle texture due to heterogeneity in the pitch. Initially, iodine was incorporated into the pitch fibers at different steps: (1) pitch fibers-oxidation, (2) pitch fibers-iodination, (3) pitch fibers-oxidation-iodination, and (4) pitch fibers-iodination-oxidation. All modified pitch fibers were then carbonized at 1000 °C. The results show that the iodine treatment at different stages significantly affected the properties of carbon fibers, with the best outcome observed when iodination was performed before the oxidation step. However, carbon fibers obtained from oxidized pitch fibers modified with iodine show pores and defects on the surface. Raman, EDAX, EPR, and TGA analyses have been employed to analyze the iodine adsorption on pitch fibers. Furthermore, the exposure time for the iodination of pitch fibers before oxidation was varied to investigate the effect on polymerization in molecules with the iodine curing process. It was observed that 1.5 h exposure of iodine to pitch fiber before stabilization enriches the polymerization reaction and improves the mechanical properties. It results in providing more flexibility and handleability to the resultant carbon fiber.

Abstract Image

研究了碘处理对中间相沥青基碳纤维性能的影响
本研究研究了碘处理对含有大量各向同性组分的非均质中间相沥青纤维的微观结构和形貌的影响,以克服沥青中非均质性引起的熔合和脆性织构等困难。最初,碘通过不同的步骤加入到沥青纤维中:(1)沥青纤维-氧化,(2)沥青纤维-碘化,(3)沥青纤维-氧化-碘化,(4)沥青纤维-碘化-氧化。所有改性沥青纤维在1000℃下碳化。结果表明,不同阶段的碘处理对碳纤维的性能有显著影响,其中在氧化步骤之前进行碘处理效果最好。然而,用碘改性氧化沥青纤维制成的碳纤维表面存在气孔和缺陷。采用拉曼、EDAX、EPR和TGA分析了沥青纤维对碘的吸附。此外,通过改变沥青纤维在氧化前的碘化暴露时间,研究碘固化过程对分子聚合的影响。结果表明,在稳定沥青纤维前,碘暴露1.5 h可使聚合反应丰富,提高纤维的力学性能。它的结果提供了更多的灵活性和可操作性,从而产生的碳纤维。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Diamond and Related Materials
Diamond and Related Materials 工程技术-材料科学:综合
CiteScore
6.00
自引率
14.60%
发文量
702
审稿时长
2.1 months
期刊介绍: DRM is a leading international journal that publishes new fundamental and applied research on all forms of diamond, the integration of diamond with other advanced materials and development of technologies exploiting diamond. The synthesis, characterization and processing of single crystal diamond, polycrystalline films, nanodiamond powders and heterostructures with other advanced materials are encouraged topics for technical and review articles. In addition to diamond, the journal publishes manuscripts on the synthesis, characterization and application of other related materials including diamond-like carbons, carbon nanotubes, graphene, and boron and carbon nitrides. Articles are sought on the chemical functionalization of diamond and related materials as well as their use in electrochemistry, energy storage and conversion, chemical and biological sensing, imaging, thermal management, photonic and quantum applications, electron emission and electronic devices. The International Conference on Diamond and Carbon Materials has evolved into the largest and most well attended forum in the field of diamond, providing a forum to showcase the latest results in the science and technology of diamond and other carbon materials such as carbon nanotubes, graphene, and diamond-like carbon. Run annually in association with Diamond and Related Materials the conference provides junior and established researchers the opportunity to exchange the latest results ranging from fundamental physical and chemical concepts to applied research focusing on the next generation carbon-based devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信