Role of hydrodynamic instabilities in high-frequency transverse thermoacoustic instabilities in a dual-swirl H2 burner

IF 5.2 2区 工程技术 Q2 ENERGY & FUELS
Hyebin Kang , Hugo Paniez , Thierry Schuller
{"title":"Role of hydrodynamic instabilities in high-frequency transverse thermoacoustic instabilities in a dual-swirl H2 burner","authors":"Hyebin Kang ,&nbsp;Hugo Paniez ,&nbsp;Thierry Schuller","doi":"10.1016/j.proci.2025.105837","DOIUrl":null,"url":null,"abstract":"<div><div>High-frequency thermoacoustic instabilities pose a significant challenge to the development of new generations of combustion systems. This study investigates the interplay between helical hydrodynamic instabilities in a dual-swirl hydrogen-air burner, featuring a spinning thermoacoustic instability coupled to the first transverse acoustic mode of the combustion chamber in the absence of injector coupling. Particle image velocimetry coupled with OH planar laser-induced fluorescence, high-speed OH<span><math><msup><mrow></mrow><mrow><mo>∗</mo></mrow></msup></math></span> imaging, and pressure measurements are used to explore how varying the swirl level <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> imparted to the hydrogen stream influences the flow and flame dynamics during self-sustained oscillations for a fixed swirl level <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>e</mi></mrow></msub><mo>=</mo><mn>1</mn><mo>.</mo><mn>2</mn></mrow></math></span> of the air stream. A dramatic shift in flame response is revealed. At low swirl <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>2</mn></mrow></math></span>, elongated flames with low-frequency self-sustained oscillations are observed, while compact flames dominated by high-frequency transverse instabilities are triggered at higher swirl levels <span><math><mrow><msub><mrow><mi>S</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>6</mn></mrow></math></span> and 1.0. In the latter case, the flow dynamics in the internal recirculation zone of the swirling flow is dominated by a transverse bulk oscillation due to acoustic displacement, while the shear layers are influenced by large-scale helical hydrodynamic structures. It is demonstrated that the amplitude of the high-frequency combustion instability depends on the synchronization between hydrodynamic <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span> and acoustic <span><math><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub></math></span> frequencies. When synchronization occurs (<span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≃</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub></mrow></math></span>), large vortical structures synchronized with the transverse acoustic wave are formed. These structures strongly dominate flame deformation compared to the direct displacement caused by the transverse spinning acoustic wave, thereby substantially enhancing the amplitude of thermoacoustic instability. Conversely, when the frequencies are misaligned (<span><math><mrow><msub><mrow><mi>f</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≠</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>h</mi></mrow></msub></mrow></math></span>), transverse oscillations are weaker but persist, indicating that the helical hydrodynamic instability primarily acts as an amplifier rather than an initiator of the thermoacoustic coupling.</div></div>","PeriodicalId":408,"journal":{"name":"Proceedings of the Combustion Institute","volume":"41 ","pages":"Article 105837"},"PeriodicalIF":5.2000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Combustion Institute","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1540748925000513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

High-frequency thermoacoustic instabilities pose a significant challenge to the development of new generations of combustion systems. This study investigates the interplay between helical hydrodynamic instabilities in a dual-swirl hydrogen-air burner, featuring a spinning thermoacoustic instability coupled to the first transverse acoustic mode of the combustion chamber in the absence of injector coupling. Particle image velocimetry coupled with OH planar laser-induced fluorescence, high-speed OH imaging, and pressure measurements are used to explore how varying the swirl level Si imparted to the hydrogen stream influences the flow and flame dynamics during self-sustained oscillations for a fixed swirl level Se=1.2 of the air stream. A dramatic shift in flame response is revealed. At low swirl Si=0.2, elongated flames with low-frequency self-sustained oscillations are observed, while compact flames dominated by high-frequency transverse instabilities are triggered at higher swirl levels Si=0.6 and 1.0. In the latter case, the flow dynamics in the internal recirculation zone of the swirling flow is dominated by a transverse bulk oscillation due to acoustic displacement, while the shear layers are influenced by large-scale helical hydrodynamic structures. It is demonstrated that the amplitude of the high-frequency combustion instability depends on the synchronization between hydrodynamic fh and acoustic fa frequencies. When synchronization occurs (fafh), large vortical structures synchronized with the transverse acoustic wave are formed. These structures strongly dominate flame deformation compared to the direct displacement caused by the transverse spinning acoustic wave, thereby substantially enhancing the amplitude of thermoacoustic instability. Conversely, when the frequencies are misaligned (fafh), transverse oscillations are weaker but persist, indicating that the helical hydrodynamic instability primarily acts as an amplifier rather than an initiator of the thermoacoustic coupling.
双旋流H2燃烧器中流体动力不稳定性在高频横向热声不稳定性中的作用
高频热声不稳定性对新一代燃烧系统的开发提出了重大挑战。本研究研究了双涡流氢-空气燃烧器中螺旋流体动力不稳定性之间的相互作用,该燃烧器在没有喷油器耦合的情况下,具有旋转热声不稳定性与燃烧室第一横声模式耦合的特点。粒子图像测速与OH平面激光诱导荧光、高速OH *成像和压力测量相结合,用于探索在固定旋流水平Se=1.2时,改变注入氢流的旋流水平Si对自持续振荡过程中流动和火焰动力学的影响。火焰反应发生了戏剧性的变化。在低旋流Si=0.2时,可以观察到低频自持续振荡的细长火焰,而在高旋流Si=0.6和1.0时,可以触发以高频横向不稳定为主的致密火焰。后一种情况下,旋流内部再循环区的流动动力学主要是由声位移引起的横向体振荡,而剪切层则受大尺度螺旋水动力结构的影响。结果表明,高频燃烧不稳定性的幅值取决于水动力fh和声学fh频率之间的同步。当同步发生时,形成与横波同步的大的涡状结构。与横向自旋声波引起的直接位移相比,这些结构强烈地支配着火焰变形,从而大大增强了热声不稳定性的振幅。相反,当频率失调(fa≠fh)时,横向振荡较弱但持续存在,表明螺旋流体动力学不稳定性主要充当热声耦合的放大器而不是启动器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Proceedings of the Combustion Institute
Proceedings of the Combustion Institute 工程技术-工程:化工
CiteScore
7.00
自引率
0.00%
发文量
420
审稿时长
3.0 months
期刊介绍: The Proceedings of the Combustion Institute contains forefront contributions in fundamentals and applications of combustion science. For more than 50 years, the Combustion Institute has served as the peak international society for dissemination of scientific and technical research in the combustion field. In addition to author submissions, the Proceedings of the Combustion Institute includes the Institute''s prestigious invited strategic and topical reviews that represent indispensable resources for emergent research in the field. All papers are subjected to rigorous peer review. Research papers and invited topical reviews; Reaction Kinetics; Soot, PAH, and other large molecules; Diagnostics; Laminar Flames; Turbulent Flames; Heterogeneous Combustion; Spray and Droplet Combustion; Detonations, Explosions & Supersonic Combustion; Fire Research; Stationary Combustion Systems; IC Engine and Gas Turbine Combustion; New Technology Concepts The electronic version of Proceedings of the Combustion Institute contains supplemental material such as reaction mechanisms, illustrating movies, and other data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信