Xiachan Chen , Yiming Liu , Jing Zou , Hao Chen , Hengrui Zhang , Yan Guo , Xingjie Zan
{"title":"Cell membrane-camouflaged nanomedicines for enhanced thrombolysis and blood-brain barrier penetration in ischemic stroke therapy","authors":"Xiachan Chen , Yiming Liu , Jing Zou , Hao Chen , Hengrui Zhang , Yan Guo , Xingjie Zan","doi":"10.1016/j.ijpx.2025.100404","DOIUrl":null,"url":null,"abstract":"<div><div>Thrombus-induced ischemic stroke (IS) remains a serious threat a serious health threat with limited therapeutic efficacy due to the dual challenges of precise thrombus targeting and restricted blood-brain barrier (BBB) penetration. While conventional nanocarriers, such as liposomes, micelles, and polymeric nanoparticles (NPs), demonstrate clinical potential due to their mature preparation protocols, their application is limited by poor targeting accuracy, inadequate biocompatibility, and rapid systemic clearance. In response, microenvironment-responsive biomimetic drug delivery systems based on cell membrane-camouflaged nanomedicines (CM-NMs) have emerged as a promising strategy, leveraging the pathological features of ischemic lesions for enhanced targeting and treatment. CM-NMs stand out by utilizing cell membranes to preserve innate targeting and/or BBB penetration capabilities. This approach also ensures high biocompatibility and minimizes the risk of immune clearance. This review highlights recent advances in CM-NMs for IS treatment, critically discussing three key approaches: (1) platelet membrane-camouflaged nanomedicines (PLM-NMs), which mimic platelet adhesion for thrombus-specific accumulation, (2) immune cell membrane NMs and stem cell membrane NMs, which leverage inflammatory tropism or homing mechanisms for enhanced BBB penetration, and (3) hybrid membrane NMs, which enable multi-targeting capabilities. Furthermore, we discuss ongoing challenges and clinical translation potential of CM-NMs to provide guidance for next-generation CM-NMs.</div></div>","PeriodicalId":14280,"journal":{"name":"International Journal of Pharmaceutics: X","volume":"10 ","pages":"Article 100404"},"PeriodicalIF":6.4000,"publicationDate":"2025-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Pharmaceutics: X","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2590156725000891","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Thrombus-induced ischemic stroke (IS) remains a serious threat a serious health threat with limited therapeutic efficacy due to the dual challenges of precise thrombus targeting and restricted blood-brain barrier (BBB) penetration. While conventional nanocarriers, such as liposomes, micelles, and polymeric nanoparticles (NPs), demonstrate clinical potential due to their mature preparation protocols, their application is limited by poor targeting accuracy, inadequate biocompatibility, and rapid systemic clearance. In response, microenvironment-responsive biomimetic drug delivery systems based on cell membrane-camouflaged nanomedicines (CM-NMs) have emerged as a promising strategy, leveraging the pathological features of ischemic lesions for enhanced targeting and treatment. CM-NMs stand out by utilizing cell membranes to preserve innate targeting and/or BBB penetration capabilities. This approach also ensures high biocompatibility and minimizes the risk of immune clearance. This review highlights recent advances in CM-NMs for IS treatment, critically discussing three key approaches: (1) platelet membrane-camouflaged nanomedicines (PLM-NMs), which mimic platelet adhesion for thrombus-specific accumulation, (2) immune cell membrane NMs and stem cell membrane NMs, which leverage inflammatory tropism or homing mechanisms for enhanced BBB penetration, and (3) hybrid membrane NMs, which enable multi-targeting capabilities. Furthermore, we discuss ongoing challenges and clinical translation potential of CM-NMs to provide guidance for next-generation CM-NMs.
期刊介绍:
International Journal of Pharmaceutics: X offers authors with high-quality research who want to publish in a gold open access journal the opportunity to make their work immediately, permanently, and freely accessible.
International Journal of Pharmaceutics: X authors will pay an article publishing charge (APC), have a choice of license options, and retain copyright. Please check the APC here. The journal is indexed in SCOPUS, PUBMED, PMC and DOAJ.
The International Journal of Pharmaceutics is the second most cited journal in the "Pharmacy & Pharmacology" category out of 358 journals, being the true home for pharmaceutical scientists concerned with the physical, chemical and biological properties of devices and delivery systems for drugs, vaccines and biologicals, including their design, manufacture and evaluation. This includes evaluation of the properties of drugs, excipients such as surfactants and polymers and novel materials. The journal has special sections on pharmaceutical nanotechnology and personalized medicines, and publishes research papers, reviews, commentaries and letters to the editor as well as special issues.