Yuyang Wan , Ning Wang , Ershun Du , Xueshan Liu , Yanbo Wang , Zhe Chen , Chongqing Kang
{"title":"Coordinated operation of alternative fuel vehicle-integrated microgrid in a coupled power-transportation network: a Stackelberg–Nash game framework","authors":"Yuyang Wan , Ning Wang , Ershun Du , Xueshan Liu , Yanbo Wang , Zhe Chen , Chongqing Kang","doi":"10.1016/j.apenergy.2025.126800","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid development of alternative fuel vehicles (AFVs) and renewable energy sources, the increasing coordination between electric vehicles (EVs) and hydrogen vehicles (HVs) in urban coupled power-transportation networks (CPTNs) fosters optimized energy scheduling and enhanced system performance. This study proposes a two-level Stackelberg-Nash game framework for AFV-integrated microgrids in a CPTN to enhance the economic efficiency of microgrid. This framework employs a Stackelberg game model to define the leader-follower relationship between the microgrid operator and the vehicle-to-grid (V2G) aggregator. Nash equilibrium games are established to capture competitive interactions among charging stations (CSs) and among hydrogen refueling stations (HRSs). Furthermore, an optimal scheduling model is proposed to minimize microgrid operation costs considering the spatiotemporal dynamics and user preferences of EVs and HVs, supported by the proposed dynamic choice model. A game-theoretic pricing and incentive mechanism promotes AFV participation in V2G services, enhancing the profitability of CSs and HRSs. Afterward, a momentum-enhanced Stackelberg-Nash equilibrium algorithm is developed to address the bi-level optimization problem. Finally, numerical simulations validate the effectiveness of the proposed method in improving economic efficiency and reducing operation costs. The proposed approach offers an effective solution for integrating large-scale AFV fleets into sustainable urban energy and transportation systems.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"401 ","pages":"Article 126800"},"PeriodicalIF":11.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261925015302","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the rapid development of alternative fuel vehicles (AFVs) and renewable energy sources, the increasing coordination between electric vehicles (EVs) and hydrogen vehicles (HVs) in urban coupled power-transportation networks (CPTNs) fosters optimized energy scheduling and enhanced system performance. This study proposes a two-level Stackelberg-Nash game framework for AFV-integrated microgrids in a CPTN to enhance the economic efficiency of microgrid. This framework employs a Stackelberg game model to define the leader-follower relationship between the microgrid operator and the vehicle-to-grid (V2G) aggregator. Nash equilibrium games are established to capture competitive interactions among charging stations (CSs) and among hydrogen refueling stations (HRSs). Furthermore, an optimal scheduling model is proposed to minimize microgrid operation costs considering the spatiotemporal dynamics and user preferences of EVs and HVs, supported by the proposed dynamic choice model. A game-theoretic pricing and incentive mechanism promotes AFV participation in V2G services, enhancing the profitability of CSs and HRSs. Afterward, a momentum-enhanced Stackelberg-Nash equilibrium algorithm is developed to address the bi-level optimization problem. Finally, numerical simulations validate the effectiveness of the proposed method in improving economic efficiency and reducing operation costs. The proposed approach offers an effective solution for integrating large-scale AFV fleets into sustainable urban energy and transportation systems.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.