Voiculescu's theorem in properly infinite factors

IF 1.6 2区 数学 Q1 MATHEMATICS
Donald Hadwin , Minghui Ma , Junhao Shen
{"title":"Voiculescu's theorem in properly infinite factors","authors":"Donald Hadwin ,&nbsp;Minghui Ma ,&nbsp;Junhao Shen","doi":"10.1016/j.jfa.2025.111198","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we investigate Voiculescu's theorem on approximate unitary equivalence in separable properly infinite factors. As applications, we establish the norm-denseness of the set of all reducible operators, prove a generalized Voiculescu's bicommutant theorem and a version of asymptotic bicommutant theorem, and obtain an interesting cohomological result. Additionally, we extend these results to multiplier algebras within separable type III factors. At last, a concept of the nuclear length is introduced.</div></div>","PeriodicalId":15750,"journal":{"name":"Journal of Functional Analysis","volume":"290 1","pages":"Article 111198"},"PeriodicalIF":1.6000,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022123625003805","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate Voiculescu's theorem on approximate unitary equivalence in separable properly infinite factors. As applications, we establish the norm-denseness of the set of all reducible operators, prove a generalized Voiculescu's bicommutant theorem and a version of asymptotic bicommutant theorem, and obtain an interesting cohomological result. Additionally, we extend these results to multiplier algebras within separable type III factors. At last, a concept of the nuclear length is introduced.
沃库列斯库定理在适当无穷因子中的应用
本文研究了关于可分正无穷因子近似酉等价的Voiculescu定理。作为应用,我们建立了所有可约算子集合的范数密度,证明了一个广义Voiculescu的双突变定理和一个渐近双突变定理的版本,得到了一个有趣的上同调结果。此外,我们将这些结果推广到可分离型III因子内的乘数代数。最后,引入了核长度的概念。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.20
自引率
5.90%
发文量
271
审稿时长
7.5 months
期刊介绍: The Journal of Functional Analysis presents original research papers in all scientific disciplines in which modern functional analysis plays a basic role. Articles by scientists in a variety of interdisciplinary areas are published. Research Areas Include: • Significant applications of functional analysis, including those to other areas of mathematics • New developments in functional analysis • Contributions to important problems in and challenges to functional analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信