Jong Hyeok Han , Boseong Heo , Myeong Jin Ju , Youngjin Kim , Joon Ha Chang , Hee-Jae Jeon
求助PDF
{"title":"Quantitative image-analysis framework for precise discrimination of cation mixing in high-nickel NCM cathodes","authors":"Jong Hyeok Han , Boseong Heo , Myeong Jin Ju , Youngjin Kim , Joon Ha Chang , Hee-Jae Jeon","doi":"10.1016/j.mseb.2025.118801","DOIUrl":null,"url":null,"abstract":"<div><div>Quantitative assessment of Li/Ni mixing phenomena in high-nickel layered oxide cathode materials for lithiuim-ion batteries (LIBs) remain constrained by subjective visual interpretation limiting reproducibility and statistical rigor in atomic-scale characterization. Systematic image processing methodology incorporating Gaussian convolution filtering, adaptive threshold segmentation, morphological boundary refinement, and circular Hough transform detection enables automated extraction of crystallographic descriptors from atomic-scale images while eliminating observer-dependent interpretation variabilities. Comprehensive structural analysis reveals disparities between distinct Li/Ni mixing regimes, with inadequate cation interdiffusion exhibiting substantially elevated angular deviation frequencies and extensive misaligned region compared to enhanced mixing conditions. Crystallographic parameter investigation demonstrates interlayer spacing variations that reflect preservation of layered structure with compositional heterogeneities versus thermodynamically favorable arrangements. The underlying thermodynamics elucidates counterintuitive relationships wherein enhanced Li/Ni mixing promotes structural coherence through cooperative cation rearrangement approaching minimum energy configurations. These protocols achieve exceptional reproducibility, enabling systematic structure–property correlations essential for data-driven optimization in advanced material development.</div></div>","PeriodicalId":18233,"journal":{"name":"Materials Science and Engineering: B","volume":"323 ","pages":"Article 118801"},"PeriodicalIF":4.6000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: B","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921510725008256","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
用于精确判别高镍NCM阴极阳离子混合的定量图像分析框架
锂离子电池(LIBs)用高镍层状氧化物正极材料中Li/Ni混合现象的定量评估仍然受到主观视觉解释的限制,限制了原子尺度表征的再现性和统计严严性。系统的图像处理方法包括高斯卷积滤波、自适应阈值分割、形态边界细化和圆形霍夫变换检测,可以从原子尺度图像中自动提取晶体描述符,同时消除依赖于观察者的解释变量。综合结构分析揭示了不同Li/Ni混合机制之间的差异,与增强混合条件相比,不充分的阳离子相互扩散表现出明显升高的角偏差频率和广泛的错位区域。晶体学参数研究表明,层间间距的变化反映了层状结构的保存与组成非均质相对于热力学有利的排列。潜在的热力学阐明了反直觉的关系,其中增强的Li/Ni混合通过接近最小能量配置的协同阳离子重排促进结构相干性。这些协议实现了卓越的可重复性,实现了先进材料开发中数据驱动优化所必需的系统结构-性能相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。