Modeling Thermal Effects in Atomic Layer Deposition for Trench-Shaped Structures

IF 4.3 2区 工程技术 Q2 ENGINEERING, CHEMICAL
Gizem Ersavas Isitman, Daulet Izbassarov, Parsa Tamadonfar, Riikka L. Puurunen, Ville Vuorinen
{"title":"Modeling Thermal Effects in Atomic Layer Deposition for Trench-Shaped Structures","authors":"Gizem Ersavas Isitman, Daulet Izbassarov, Parsa Tamadonfar, Riikka L. Puurunen, Ville Vuorinen","doi":"10.1016/j.ces.2025.122683","DOIUrl":null,"url":null,"abstract":"An atomic layer deposition (ALD) simulation approach is presented for transient diffusion of heat and mass at low Knudsen numbers (<span><span style=\"\"></span><span style=\"font-size: 90%; display: inline-block;\" tabindex=\"0\"><svg focusable=\"false\" height=\"1.971ex\" role=\"img\" style=\"vertical-align: -0.235ex;\" viewbox=\"0 -747.2 4103.6 848.5\" width=\"9.531ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMATHI-4B\"></use></g><g is=\"true\" transform=\"translate(889,0)\"><use xlink:href=\"#MJMATHI-6E\"></use></g><g is=\"true\" transform=\"translate(1767,0)\"><use xlink:href=\"#MJMAIN-3C\"></use></g><g is=\"true\" transform=\"translate(2824,0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-31\" y=\"0\"></use></g></g></g></svg></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi is=\"true\">K</mi><mi is=\"true\">n</mi><mo linebreak=\"goodbreak\" is=\"true\">&lt;</mo><mn is=\"true\">0.1</mn></mrow></math></script></span>), focusing on thermal effects in trench-shaped structures. Two boundary conditions (BCs) are analyzed: the ‘thin wall’ BC incorporates exothermic reactions with a derived wall heat flux term, and the ‘thick wall’ BC maintains constant wall temperature ranging between 500 K and 800 K. For both BCs, we examine aspect ratios from 1 to 100. The chosen BC significantly impacts reaction kinetics/peak temperatures, with local temperature variations up to 200 K under ‘thin wall’ conditions. The coating time ratio between ‘thin wall’ and ‘thick wall’ ranges from 0.9 to 1.7. Two ‘universal’ functional forms are proposed to explain how surface coverage depends on time and how coating time relates to aspect ratio and diffusion timescale. Results emphasize the crucial role of temperature distribution in ALD, impacting growth per cycle, reactant decomposition/desorption, and potential substrate damage.","PeriodicalId":271,"journal":{"name":"Chemical Engineering Science","volume":"22 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ces.2025.122683","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An atomic layer deposition (ALD) simulation approach is presented for transient diffusion of heat and mass at low Knudsen numbers (), focusing on thermal effects in trench-shaped structures. Two boundary conditions (BCs) are analyzed: the ‘thin wall’ BC incorporates exothermic reactions with a derived wall heat flux term, and the ‘thick wall’ BC maintains constant wall temperature ranging between 500 K and 800 K. For both BCs, we examine aspect ratios from 1 to 100. The chosen BC significantly impacts reaction kinetics/peak temperatures, with local temperature variations up to 200 K under ‘thin wall’ conditions. The coating time ratio between ‘thin wall’ and ‘thick wall’ ranges from 0.9 to 1.7. Two ‘universal’ functional forms are proposed to explain how surface coverage depends on time and how coating time relates to aspect ratio and diffusion timescale. Results emphasize the crucial role of temperature distribution in ALD, impacting growth per cycle, reactant decomposition/desorption, and potential substrate damage.
沟状结构原子层沉积的热效应模拟
提出了一种原子层沉积(ALD)模拟方法,用于低Knudsen数(Kn<0.1)下热量和质量的瞬态扩散,重点研究了沟槽状结构中的热效应。分析了两种边界条件(BC):“薄壁”BC结合了放热反应和导出的壁热流密度项,“厚壁”BC保持壁温在500 - 800 K之间恒定。对于这两个bc,我们检查宽高比从1到100。选择的BC显著影响反应动力学/峰值温度,在“薄壁”条件下,局部温度变化可达200 K。“薄壁”与“厚壁”的涂覆时间比为0.9 ~ 1.7。提出了两种“通用”函数形式来解释表面覆盖率如何取决于时间以及涂层时间如何与纵横比和扩散时间尺度相关。结果强调了温度分布在ALD中的关键作用,影响每个周期的生长、反应物分解/解吸以及潜在的底物损伤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Chemical Engineering Science
Chemical Engineering Science 工程技术-工程:化工
CiteScore
7.50
自引率
8.50%
发文量
1025
审稿时长
50 days
期刊介绍: Chemical engineering enables the transformation of natural resources and energy into useful products for society. It draws on and applies natural sciences, mathematics and economics, and has developed fundamental engineering science that underpins the discipline. Chemical Engineering Science (CES) has been publishing papers on the fundamentals of chemical engineering since 1951. CES is the platform where the most significant advances in the discipline have ever since been published. Chemical Engineering Science has accompanied and sustained chemical engineering through its development into the vibrant and broad scientific discipline it is today.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信