Electronic Modification at Atomic Scale: Design and Preparation of Diatomic Structures by Atomic Layer Deposition for Methanol Steam Reforming

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jinqiu Guo, Leisheng Che, Yuyao Qin, Yaqi Hu, Xiaolin Tai, Jin Yuan, Li Jin, Yue Lin, Hongbo Zhang
{"title":"Electronic Modification at Atomic Scale: Design and Preparation of Diatomic Structures by Atomic Layer Deposition for Methanol Steam Reforming","authors":"Jinqiu Guo, Leisheng Che, Yuyao Qin, Yaqi Hu, Xiaolin Tai, Jin Yuan, Li Jin, Yue Lin, Hongbo Zhang","doi":"10.1002/anie.202514431","DOIUrl":null,"url":null,"abstract":"The electronic effects of bimetallic components in catalysis remain poorly understood. Herein, atomically dispersed transition metal (TM) modified platinum (Pt)‐based bimetallic catalysts were designed and synthesized with the atomic layer deposition (ALD) method. Methanol steam reforming (MSR) was selected as a probe reaction to investigate the atomic‐level electronic effects of nickel (Ni) and iron (Fe) on Pt species. In situ/ex situ characterizations, isotope labeling, and DFT calculations reveal that different transition metals and ALD cycles tune the Pt electronic structure, significantly affecting catalytic activity. Notably, the 10cNi/Pt<jats:sub>1</jats:sub>/CeO<jats:sub>2</jats:sub> catalyst exhibits optimal electronic modification, achieving the highest MSR and water‐gas shift (WGS) conversions and the lowest activation energies. Additionally, kinetic isotope effect studies confirm that hydrogen formation proceeds via methanol dehydrogenation coupled with WGS. These findings provide new insights into electronic modifications at atomic scales within the bimetallic components, offering valuable guidance for the design and development of advanced catalytic systems.","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"1 1","pages":"e202514431"},"PeriodicalIF":16.9000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202514431","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The electronic effects of bimetallic components in catalysis remain poorly understood. Herein, atomically dispersed transition metal (TM) modified platinum (Pt)‐based bimetallic catalysts were designed and synthesized with the atomic layer deposition (ALD) method. Methanol steam reforming (MSR) was selected as a probe reaction to investigate the atomic‐level electronic effects of nickel (Ni) and iron (Fe) on Pt species. In situ/ex situ characterizations, isotope labeling, and DFT calculations reveal that different transition metals and ALD cycles tune the Pt electronic structure, significantly affecting catalytic activity. Notably, the 10cNi/Pt1/CeO2 catalyst exhibits optimal electronic modification, achieving the highest MSR and water‐gas shift (WGS) conversions and the lowest activation energies. Additionally, kinetic isotope effect studies confirm that hydrogen formation proceeds via methanol dehydrogenation coupled with WGS. These findings provide new insights into electronic modifications at atomic scales within the bimetallic components, offering valuable guidance for the design and development of advanced catalytic systems.
原子尺度上的电子修饰:用原子层沉积法设计和制备甲醇蒸汽重整的双原子结构
双金属组分在催化中的电子效应仍然知之甚少。本文采用原子层沉积法(ALD)设计并合成了原子分散过渡金属(TM)修饰的铂基双金属催化剂。选择甲醇蒸汽重整(MSR)作为探针反应,研究了镍(Ni)和铁(Fe)对铂的原子级电子效应。原位/非原位表征、同位素标记和DFT计算表明,不同的过渡金属和ALD循环调整了Pt的电子结构,显著影响了催化活性。值得注意的是,10cNi/Pt1/CeO2催化剂表现出最佳的电子修饰,实现了最高的MSR和水-气转换(WGS)转化率和最低的活化能。此外,动力学同位素效应研究证实,氢的形成是通过甲醇脱氢和WGS耦合进行的。这些发现为双金属组分在原子尺度上的电子修饰提供了新的见解,为先进催化系统的设计和开发提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信