Unleashing redox activity of biochar via a green thermal air oxidation process: Insights from machine learning

IF 10 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Zhixu Du , Zhuozhuo Sun , Xiangrong Li , Haiqin Zhou , Feng Shen , Jianhua Hou , Lichun Dai
{"title":"Unleashing redox activity of biochar via a green thermal air oxidation process: Insights from machine learning","authors":"Zhixu Du ,&nbsp;Zhuozhuo Sun ,&nbsp;Xiangrong Li ,&nbsp;Haiqin Zhou ,&nbsp;Feng Shen ,&nbsp;Jianhua Hou ,&nbsp;Lichun Dai","doi":"10.1016/j.jclepro.2025.146718","DOIUrl":null,"url":null,"abstract":"<div><div>The redox activity of biochar is critical in diverse biotic and abiotic processes. Herein, thermal air oxidation is proposed as a green strategy to unleash the redox activities of biochar. Results show that the electron donating capacities for biochars prepared at 300–700 °C (i.e., B300, B500 and B700) are sharply increased from ≤0.06 mmol e<sup>−</sup>/g to 0.53, 0.7 and 0.69 mmol e<sup>−</sup>/g, respectively, with the increase of thermal air oxidation temperature to 400 °C. The electron accepting capacity for B300 is increased with increasing thermal air oxidation temperatures, while the electron accepting capacities for B500 and B700 peak at thermal air oxidation temperatures of 300 and 350 °C (0.97 and 0.99 mmol e<sup>−</sup>/g), respectively. In addition, PFRs on B500 are more remarkably enriched after thermal air oxidation. These results suggest that thermal air oxidation highly efficiently multiplied biochar redox activity. Machine learning results further suggest that the electron donating capacity has a higher dependence on electron mobility regulated by carbon structural properties, while the electron accepting capacity is mainly limited by the number of active sites. These results are beneficial for the engineering of biochar redox activity via thermal air oxidation for potential applications in mediating redox processes and the understanding of controlling parameters for biochar redox activity.</div></div>","PeriodicalId":349,"journal":{"name":"Journal of Cleaner Production","volume":"527 ","pages":"Article 146718"},"PeriodicalIF":10.0000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cleaner Production","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959652625020682","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

The redox activity of biochar is critical in diverse biotic and abiotic processes. Herein, thermal air oxidation is proposed as a green strategy to unleash the redox activities of biochar. Results show that the electron donating capacities for biochars prepared at 300–700 °C (i.e., B300, B500 and B700) are sharply increased from ≤0.06 mmol e/g to 0.53, 0.7 and 0.69 mmol e/g, respectively, with the increase of thermal air oxidation temperature to 400 °C. The electron accepting capacity for B300 is increased with increasing thermal air oxidation temperatures, while the electron accepting capacities for B500 and B700 peak at thermal air oxidation temperatures of 300 and 350 °C (0.97 and 0.99 mmol e/g), respectively. In addition, PFRs on B500 are more remarkably enriched after thermal air oxidation. These results suggest that thermal air oxidation highly efficiently multiplied biochar redox activity. Machine learning results further suggest that the electron donating capacity has a higher dependence on electron mobility regulated by carbon structural properties, while the electron accepting capacity is mainly limited by the number of active sites. These results are beneficial for the engineering of biochar redox activity via thermal air oxidation for potential applications in mediating redox processes and the understanding of controlling parameters for biochar redox activity.

Abstract Image

Abstract Image

通过绿色热空气氧化过程释放生物炭的氧化还原活性:来自机器学习的见解
生物炭的氧化还原活性在多种生物和非生物过程中至关重要。在此,热空气氧化被认为是一种释放生物炭氧化还原活性的绿色策略。结果表明,在300-700℃制备的生物炭(即B300、B500和B700),随着热风氧化温度升高到400℃,其给电子容量分别从≤0.06 mmol e−/g急剧增加到0.53、0.7和0.69 mmol e−/g。B300的电子接受容量随着热空气氧化温度的升高而增大,而B500和B700的电子接受容量在热空气氧化温度为300℃和350℃时分别达到峰值(0.97和0.99 mmol e−/g)。此外,热空气氧化后B500上的PFRs富集更为显著。这些结果表明,热空气氧化可以有效地增加生物炭的氧化还原活性。机器学习结果进一步表明,给电子能力对碳结构性质调控的电子迁移率有较高的依赖性,而接受电子能力主要受活性位点数量的限制。这些结果有助于热空气氧化生物炭氧化还原活性的工程研究,以及在氧化还原过程中的潜在应用,以及对生物炭氧化还原活性控制参数的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cleaner Production
Journal of Cleaner Production 环境科学-工程:环境
CiteScore
20.40
自引率
9.00%
发文量
4720
审稿时长
111 days
期刊介绍: The Journal of Cleaner Production is an international, transdisciplinary journal that addresses and discusses theoretical and practical Cleaner Production, Environmental, and Sustainability issues. It aims to help societies become more sustainable by focusing on the concept of 'Cleaner Production', which aims at preventing waste production and increasing efficiencies in energy, water, resources, and human capital use. The journal serves as a platform for corporations, governments, education institutions, regions, and societies to engage in discussions and research related to Cleaner Production, environmental, and sustainability practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信