Development of a spin selective electrocatalyst platform and its use to study spin-polarization and d-orbital occupancy effects in oxygen evolution reaction electrocatalysts.
Meera Joy, Brian Bloom, Keerthana Govindaraj, Joseph A. Albro, Aravind Vadakkayil, David H Waldeck
{"title":"Development of a spin selective electrocatalyst platform and its use to study spin-polarization and d-orbital occupancy effects in oxygen evolution reaction electrocatalysts.","authors":"Meera Joy, Brian Bloom, Keerthana Govindaraj, Joseph A. Albro, Aravind Vadakkayil, David H Waldeck","doi":"10.1039/d5ta04850h","DOIUrl":null,"url":null,"abstract":"We describe a polymer-catalyst platform that uses spin-polarized electron currents, recently reported to improve the efficiency of the oxygen evolution reaction (OER), in combination with transition metal-oxide catalysts to enhance the efficiency of their OER electrocatalysis. We describe the creation of an electrode coated with a chiral conjugated polymer film which acts as a spin transport layer and ensures that anodic reaction proceeds with a spin bias. Systematic studies on a series of transition metal oxide catalysts demonstrate that spin selectivity improves catalytic efficiency irrespective of the catalysts position on a ‘volcano’ plot and that the benefit of electron spin filtering correlates with the number of unpaired d-orbital electrons in the catalyst. These studies identify spin-control as a design principle for engineering efficient OER catalysts. More broadly, these studies demonstrate a promising electrode scaffold for investigating the role of electron spin in chemical reactions.","PeriodicalId":82,"journal":{"name":"Journal of Materials Chemistry A","volume":"92 1","pages":""},"PeriodicalIF":9.5000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry A","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5ta04850h","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
We describe a polymer-catalyst platform that uses spin-polarized electron currents, recently reported to improve the efficiency of the oxygen evolution reaction (OER), in combination with transition metal-oxide catalysts to enhance the efficiency of their OER electrocatalysis. We describe the creation of an electrode coated with a chiral conjugated polymer film which acts as a spin transport layer and ensures that anodic reaction proceeds with a spin bias. Systematic studies on a series of transition metal oxide catalysts demonstrate that spin selectivity improves catalytic efficiency irrespective of the catalysts position on a ‘volcano’ plot and that the benefit of electron spin filtering correlates with the number of unpaired d-orbital electrons in the catalyst. These studies identify spin-control as a design principle for engineering efficient OER catalysts. More broadly, these studies demonstrate a promising electrode scaffold for investigating the role of electron spin in chemical reactions.
期刊介绍:
The Journal of Materials Chemistry A, B & C covers a wide range of high-quality studies in the field of materials chemistry, with each section focusing on specific applications of the materials studied. Journal of Materials Chemistry A emphasizes applications in energy and sustainability, including topics such as artificial photosynthesis, batteries, and fuel cells. Journal of Materials Chemistry B focuses on applications in biology and medicine, while Journal of Materials Chemistry C covers applications in optical, magnetic, and electronic devices. Example topic areas within the scope of Journal of Materials Chemistry A include catalysis, green/sustainable materials, sensors, and water treatment, among others.