Yongshen Lu, Wen Zhang, Ziheng Chen, Fangwang Fu, Jinyong Zhang, Lin Ren, Weimin Wang, Fan Zhang, Zhengyi Fu
{"title":"Tailored strain–octahedral–defect interplay for giant multiferroicity in BiFeO3 via scandium implantation","authors":"Yongshen Lu, Wen Zhang, Ziheng Chen, Fangwang Fu, Jinyong Zhang, Lin Ren, Weimin Wang, Fan Zhang, Zhengyi Fu","doi":"10.1016/j.jmst.2025.07.076","DOIUrl":null,"url":null,"abstract":"The escalating demand for high-performance nonvolatile memories, driven by the rapid evolution of artificial intelligence hardware, highlights the urgent need for breakthroughs in multiferroic thin-film engineering. While environmentally benign bismuth ferrite (BFO) thin films exhibit intrinsic ferroelectric-ferromagnetic duality, their performance suffers considerable degradation because of dimensional scaling effects and stochastic percolation of oxygen vacancies (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mo is=\"true\">&#x2022;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span>). Herein, we introduce a quantum-engineered implantation strategy utilizing scandium ions (Sc<sup>3+</sup>) as metastable interstitial dopants to systematically establish self-adaptive lattice-oxygen vacancy equilibria through quantum-confined interactions. Atomic-resolution electron microscopy and multiferroicity scaling behavior analysis reveal that precise Sc<sup>3+</sup> implantation (dose: 10<sup>15</sup> ions·cm<sup>−2</sup>) induces a quantum-confined strain field and vacancy dipole ordering, synergistically enhancing ferroelectric polarization to 158.6 μC/cm<sup>2</sup> while suppressing leakage currents to 10⁻<sup>8</sup> A/cm². Concurrently, strain-mediated magnetoelectric coupling elevates saturation magnetization to 0.82 emu/cm<sup>3</sup> via the modulation of the spin–lattice interaction, accompanied by electronic structure reconfiguration (bandgap narrowing Δ<em>E</em><sub>g</sub> = 2.09 eV). Crucially, Sc<sup>3+</sup>–<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">&#x2022;</mo><mo is=\"true\">&#x2022;</mo></mrow></msubsup></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -1.043ex;\" viewbox=\"0 -747.2 1558.3 1196.3\" width=\"3.619ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-56\"></use></g><g is=\"true\" transform=\"translate(750,306)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g><g is=\"true\" transform=\"translate(353,0)\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-2219\"></use></g></g><g is=\"true\" transform=\"translate(750,-335)\"><g is=\"true\"><use transform=\"scale(0.707)\" xlink:href=\"#MJMAIN-4F\"></use></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><msubsup is=\"true\"><mi is=\"true\" mathvariant=\"normal\">V</mi><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></span></span><script type=\"math/mml\"><math><msubsup is=\"true\"><mi mathvariant=\"normal\" is=\"true\">V</mi><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">O</mi></mrow><mrow is=\"true\"><mo is=\"true\">•</mo><mo is=\"true\">•</mo></mrow></msubsup></math></script></span> pairs exhibit policy network-like characteristics, wherein each dopant autonomously optimizes local multiferroic responses through strain-oxygen chemical potential feedback loops. This study provides a Materials Genome blueprint for the design of multiferroic systems, bridging the gap between quantum-scale manipulation and device-level operational stability in oxide electronics.","PeriodicalId":16154,"journal":{"name":"Journal of Materials Science & Technology","volume":"42 1","pages":""},"PeriodicalIF":14.3000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science & Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jmst.2025.07.076","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The escalating demand for high-performance nonvolatile memories, driven by the rapid evolution of artificial intelligence hardware, highlights the urgent need for breakthroughs in multiferroic thin-film engineering. While environmentally benign bismuth ferrite (BFO) thin films exhibit intrinsic ferroelectric-ferromagnetic duality, their performance suffers considerable degradation because of dimensional scaling effects and stochastic percolation of oxygen vacancies (). Herein, we introduce a quantum-engineered implantation strategy utilizing scandium ions (Sc3+) as metastable interstitial dopants to systematically establish self-adaptive lattice-oxygen vacancy equilibria through quantum-confined interactions. Atomic-resolution electron microscopy and multiferroicity scaling behavior analysis reveal that precise Sc3+ implantation (dose: 1015 ions·cm−2) induces a quantum-confined strain field and vacancy dipole ordering, synergistically enhancing ferroelectric polarization to 158.6 μC/cm2 while suppressing leakage currents to 10⁻8 A/cm². Concurrently, strain-mediated magnetoelectric coupling elevates saturation magnetization to 0.82 emu/cm3 via the modulation of the spin–lattice interaction, accompanied by electronic structure reconfiguration (bandgap narrowing ΔEg = 2.09 eV). Crucially, Sc3+– pairs exhibit policy network-like characteristics, wherein each dopant autonomously optimizes local multiferroic responses through strain-oxygen chemical potential feedback loops. This study provides a Materials Genome blueprint for the design of multiferroic systems, bridging the gap between quantum-scale manipulation and device-level operational stability in oxide electronics.
期刊介绍:
Journal of Materials Science & Technology strives to promote global collaboration in the field of materials science and technology. It primarily publishes original research papers, invited review articles, letters, research notes, and summaries of scientific achievements. The journal covers a wide range of materials science and technology topics, including metallic materials, inorganic nonmetallic materials, and composite materials.