Constructing Gradient Soft-Rigid Structure for Directed and Fast Li-Ion Transfer Channels in Composite Solid Electrolytes

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Jingbo Mu, Shimin Liao, Shengsheng Wang, Feng Xu, Bihai Su, Linlin Shi, Xiaojing Wang, Xuewei Hao, Zengcai Guo, Zhongkai Huang, Tian Tian
{"title":"Constructing Gradient Soft-Rigid Structure for Directed and Fast Li-Ion Transfer Channels in Composite Solid Electrolytes","authors":"Jingbo Mu, Shimin Liao, Shengsheng Wang, Feng Xu, Bihai Su, Linlin Shi, Xiaojing Wang, Xuewei Hao, Zengcai Guo, Zhongkai Huang, Tian Tian","doi":"10.1002/adfm.202519281","DOIUrl":null,"url":null,"abstract":"Achieving lithium-ion flux regulation in composite solid electrolytes (CSEs) remains a critical challenge for developing solid-state Li-metal batteries suppressing dendrite growth with high-voltage compatibility. Here, a new concept of Li⁺ transport gradient soft-rigid structure CSEs is introduced, which comprises a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix integrated with acetate-functionalized cellulose nanocrystals (CNC-PVAc) and ZIF-8. This structure enables directed and fast Li⁺ conduction through low-tortuosity channels, significantly inhibiting lithium dendrite nucleation and growth. The electrochemical stability window of PHCF spans up to 4.82 V versus Li⁺/Li. Theoretical simulations reveal a synergistic intrinsic origin of the exceptional performance for this designed Li⁺ transport gradient soft-rigid structure CSEs. Consequently, the synthesized CSEs demonstrate high ionic conductivity (1.79 × 10<sup>−4</sup> S cm<sup>−1</sup>) and a notably high Li⁺ transference number (t<sub>Li⁺</sub>) of 0.79 at 60 °C. Corresponding all-solid-state LiFePO<sub>4</sub>||Li and NCM811|| Li cells deliver impressive specific capacities of 163.78 (0.1C) and 190.67 mAh g<sup>−1</sup> (0.5C) at 60 °C, respectively. This work presents a high-performance CSEs with intrinsic safety, providing valuable insights for novel design concept of solid-state batteries (SMBs).","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"15 1","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202519281","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Achieving lithium-ion flux regulation in composite solid electrolytes (CSEs) remains a critical challenge for developing solid-state Li-metal batteries suppressing dendrite growth with high-voltage compatibility. Here, a new concept of Li⁺ transport gradient soft-rigid structure CSEs is introduced, which comprises a poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) matrix integrated with acetate-functionalized cellulose nanocrystals (CNC-PVAc) and ZIF-8. This structure enables directed and fast Li⁺ conduction through low-tortuosity channels, significantly inhibiting lithium dendrite nucleation and growth. The electrochemical stability window of PHCF spans up to 4.82 V versus Li⁺/Li. Theoretical simulations reveal a synergistic intrinsic origin of the exceptional performance for this designed Li⁺ transport gradient soft-rigid structure CSEs. Consequently, the synthesized CSEs demonstrate high ionic conductivity (1.79 × 10−4 S cm−1) and a notably high Li⁺ transference number (tLi⁺) of 0.79 at 60 °C. Corresponding all-solid-state LiFePO4||Li and NCM811|| Li cells deliver impressive specific capacities of 163.78 (0.1C) and 190.67 mAh g−1 (0.5C) at 60 °C, respectively. This work presents a high-performance CSEs with intrinsic safety, providing valuable insights for novel design concept of solid-state batteries (SMBs).

Abstract Image

复合固体电解质中定向和快速锂离子转移通道的梯度软刚性结构构建
在复合固体电解质(cse)中实现锂离子通量调节仍然是开发具有高压兼容性的抑制枝晶生长的固态锂金属电池的关键挑战。本文介绍了一种新的Li⁺传输梯度软刚性结构CSEs概念,该CSEs由聚偏氟乙烯-共六氟丙烯(PVDF-HFP)基体与醋酸盐功能化纤维素纳米晶体(CNC-PVAc)和ZIF-8集成而成。这种结构使Li +能够通过低扭曲度通道定向、快速传导,显著抑制锂枝晶的成核和生长。与Li + /Li相比,PHCF的电化学稳定窗口高达4.82 V。理论模拟揭示了这种设计的Li +传输梯度软刚性结构cse的卓越性能的协同内在根源。因此,合成的CSEs在60℃时表现出高离子电导率(1.79 × 10−4 S cm−1)和高迁移数(tLi⁺)0.79。相应的全固态LiFePO4||Li和NCM811|| Li电池在60°C时的比容量分别为163.78 (0.1C)和190.67 mAh g−1 (0.5C)。本文提出了一种具有固有安全性的高性能cse,为固态电池的新设计理念提供了有价值的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信