Puzzle-like molecular assembly of non-flammable solid-state polymer electrolytes for safe and high-voltage lithium metal batteries.

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Junjie Chen,Changxiang He,Xudong Peng,Jin Li,Xiaosa Xu,Yin Zhou,Jiadong Shen,Jing Sun,Yiju Li,Tianshou Zhao
{"title":"Puzzle-like molecular assembly of non-flammable solid-state polymer electrolytes for safe and high-voltage lithium metal batteries.","authors":"Junjie Chen,Changxiang He,Xudong Peng,Jin Li,Xiaosa Xu,Yin Zhou,Jiadong Shen,Jing Sun,Yiju Li,Tianshou Zhao","doi":"10.1038/s41467-025-63439-6","DOIUrl":null,"url":null,"abstract":"Developing safe and high-voltage solid-state polymer electrolytes for high-specific-energy lithium metal batteries holds great promise. However, low ionic conductivity, limited Li+ transference number, narrow voltage window, and high flammability greatly hinder their practical applications. Herein, we propose a puzzle-like molecular assembly strategy to construct a solid-state polymer electrolyte via in situ polymerization. The triallyl phosphate and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate segments are spliced into the vinyl ethylene carbonate matrix to enhance anion affinity and promote lithium salt dissociation, resulting in a high ionic conductivity of 0.432 mS cm-1 and a Li+ transference number of 0.70 at 25 °C. Meanwhile, the polymer electrolyte exhibits a high oxidation voltage of 5.15 V, enabled by its intrinsic high-voltage tolerance and the formation of a robust inorganic-rich interphase. As a result, the Li||LiNi0.6Co0.2Mn0.2O2 cell maintains stable performance for 300 cycles and reliably cycles even with an application-oriented mass loading of 15.8 mg cm-2. The 2.6-Ah Li||LiNi0.8Co0.1Mn0.1O2 pouch cell reaches a high specific energy of 349 Wh kg-1. Furthermore, the developed polymer electrolyte displays superior nonflammability and the Li||LiFePO4 cell exhibits stable cycling for over 120 cycles at 100 °C. Both accelerating rate calorimetry and nail penetration tests verify the high safety of the pouch cells using the designed polymer electrolyte, showing the potential for practical applications.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"77 1","pages":"8494"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63439-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Developing safe and high-voltage solid-state polymer electrolytes for high-specific-energy lithium metal batteries holds great promise. However, low ionic conductivity, limited Li+ transference number, narrow voltage window, and high flammability greatly hinder their practical applications. Herein, we propose a puzzle-like molecular assembly strategy to construct a solid-state polymer electrolyte via in situ polymerization. The triallyl phosphate and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate segments are spliced into the vinyl ethylene carbonate matrix to enhance anion affinity and promote lithium salt dissociation, resulting in a high ionic conductivity of 0.432 mS cm-1 and a Li+ transference number of 0.70 at 25 °C. Meanwhile, the polymer electrolyte exhibits a high oxidation voltage of 5.15 V, enabled by its intrinsic high-voltage tolerance and the formation of a robust inorganic-rich interphase. As a result, the Li||LiNi0.6Co0.2Mn0.2O2 cell maintains stable performance for 300 cycles and reliably cycles even with an application-oriented mass loading of 15.8 mg cm-2. The 2.6-Ah Li||LiNi0.8Co0.1Mn0.1O2 pouch cell reaches a high specific energy of 349 Wh kg-1. Furthermore, the developed polymer electrolyte displays superior nonflammability and the Li||LiFePO4 cell exhibits stable cycling for over 120 cycles at 100 °C. Both accelerating rate calorimetry and nail penetration tests verify the high safety of the pouch cells using the designed polymer electrolyte, showing the potential for practical applications.
用于安全和高压锂金属电池的不易燃固态聚合物电解质的谜题式分子组装。
开发用于高比能锂金属电池的安全、高压固态聚合物电解质具有广阔的前景。但离子电导率低、Li+转移数有限、电压窗窄、易燃性高等缺点极大地阻碍了其实际应用。在此,我们提出了一种类似拼图的分子组装策略,通过原位聚合来构建固态聚合物电解质。磷酸三烯丙酯和2,2,3,3,4,4,4-七氟甲基丙烯酸丁酯片段拼接到乙烯基乙烯碳酸酯基体中,增强阴离子亲和力,促进锂盐解离,在25℃时离子电导率高达0.432 mS cm-1, Li+转移数为0.70。同时,聚合物电解质表现出5.15 V的高氧化电压,这是由于其固有的高压耐受性和形成的强大的富无机界面。因此,Li||LiNi0.6Co0.2Mn0.2O2电池在300次循环中保持稳定的性能,即使在面向应用的质量负载为15.8 mg cm-2的情况下也能可靠地循环。2.6 ah Li||LiNi0.8Co0.1Mn0.1O2袋状电池达到349 Wh kg-1的高比能。此外,所开发的聚合物电解质具有优异的不可燃性,并且Li||LiFePO4电池在100°C下可稳定循环超过120次。加速量热法和指甲穿透测试都验证了使用所设计的聚合物电解质的袋状电池的高安全性,显示了实际应用的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信