{"title":"Puzzle-like molecular assembly of non-flammable solid-state polymer electrolytes for safe and high-voltage lithium metal batteries.","authors":"Junjie Chen,Changxiang He,Xudong Peng,Jin Li,Xiaosa Xu,Yin Zhou,Jiadong Shen,Jing Sun,Yiju Li,Tianshou Zhao","doi":"10.1038/s41467-025-63439-6","DOIUrl":null,"url":null,"abstract":"Developing safe and high-voltage solid-state polymer electrolytes for high-specific-energy lithium metal batteries holds great promise. However, low ionic conductivity, limited Li+ transference number, narrow voltage window, and high flammability greatly hinder their practical applications. Herein, we propose a puzzle-like molecular assembly strategy to construct a solid-state polymer electrolyte via in situ polymerization. The triallyl phosphate and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate segments are spliced into the vinyl ethylene carbonate matrix to enhance anion affinity and promote lithium salt dissociation, resulting in a high ionic conductivity of 0.432 mS cm-1 and a Li+ transference number of 0.70 at 25 °C. Meanwhile, the polymer electrolyte exhibits a high oxidation voltage of 5.15 V, enabled by its intrinsic high-voltage tolerance and the formation of a robust inorganic-rich interphase. As a result, the Li||LiNi0.6Co0.2Mn0.2O2 cell maintains stable performance for 300 cycles and reliably cycles even with an application-oriented mass loading of 15.8 mg cm-2. The 2.6-Ah Li||LiNi0.8Co0.1Mn0.1O2 pouch cell reaches a high specific energy of 349 Wh kg-1. Furthermore, the developed polymer electrolyte displays superior nonflammability and the Li||LiFePO4 cell exhibits stable cycling for over 120 cycles at 100 °C. Both accelerating rate calorimetry and nail penetration tests verify the high safety of the pouch cells using the designed polymer electrolyte, showing the potential for practical applications.","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"77 1","pages":"8494"},"PeriodicalIF":15.7000,"publicationDate":"2025-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-63439-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Developing safe and high-voltage solid-state polymer electrolytes for high-specific-energy lithium metal batteries holds great promise. However, low ionic conductivity, limited Li+ transference number, narrow voltage window, and high flammability greatly hinder their practical applications. Herein, we propose a puzzle-like molecular assembly strategy to construct a solid-state polymer electrolyte via in situ polymerization. The triallyl phosphate and 2,2,3,3,4,4,4-heptafluorobutyl methacrylate segments are spliced into the vinyl ethylene carbonate matrix to enhance anion affinity and promote lithium salt dissociation, resulting in a high ionic conductivity of 0.432 mS cm-1 and a Li+ transference number of 0.70 at 25 °C. Meanwhile, the polymer electrolyte exhibits a high oxidation voltage of 5.15 V, enabled by its intrinsic high-voltage tolerance and the formation of a robust inorganic-rich interphase. As a result, the Li||LiNi0.6Co0.2Mn0.2O2 cell maintains stable performance for 300 cycles and reliably cycles even with an application-oriented mass loading of 15.8 mg cm-2. The 2.6-Ah Li||LiNi0.8Co0.1Mn0.1O2 pouch cell reaches a high specific energy of 349 Wh kg-1. Furthermore, the developed polymer electrolyte displays superior nonflammability and the Li||LiFePO4 cell exhibits stable cycling for over 120 cycles at 100 °C. Both accelerating rate calorimetry and nail penetration tests verify the high safety of the pouch cells using the designed polymer electrolyte, showing the potential for practical applications.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.