Molecular and thermal signatures of dental tissues in third molars: An in vitro comparative study using fourier-transform infrared spectroscopy and differential scanning calorimetry
{"title":"Molecular and thermal signatures of dental tissues in third molars: An in vitro comparative study using fourier-transform infrared spectroscopy and differential scanning calorimetry","authors":"Rola Zahedah , Recep Üstünsoy , Aliye Tuğçe Gürcan , Bircan Dinç","doi":"10.1016/j.archoralbio.2025.106402","DOIUrl":null,"url":null,"abstract":"<div><h3>Objective</h3><div>To characterize and compare the molecular and thermal characteristics of enamel, dentin, cementum, and the dentin–pulp complex in permanent third molars using Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC).</div></div><div><h3>Design</h3><div>Samples from extracted third molars (n = 15) were prepared and analyzed using FTIR to assess molecular composition and DSC to evaluate thermal transitions, including dehydration, collagen degradation, and mineral phase transformation. All measurements were conducted in triplicate.</div></div><div><h3>Results</h3><div>FTIR revealed enamel as highly mineralized with minimal organic content, dentin and cementum as collagen-rich, and the dentin–pulp complex as a hybrid tissue. DSC analysis identified consistent thermal transitions: water loss (110–125 °C), collagen breakdown (300–320 °C), and mineral decomposition (455–470 °C). Enamel displayed the highest crystallinity, while cementum exhibited the highest enthalpy change. Tissues with stronger FTIR collagen peaks corresponded to higher DSC energy release during protein degradation.</div></div><div><h3>Conclusion</h3><div>Molecular and thermal profiling of dental tissues provide baseline reference data for biomaterial design and regenerative strategies.</div></div><div><h3>Clinical significance</h3><div>Understanding tissue-specific molecular and thermal properties can guide the development of biomimetic restorative materials, inform safer thermal thresholds during clinical procedures, and support diagnostic approaches for aging and pathological changes.</div></div>","PeriodicalId":8288,"journal":{"name":"Archives of oral biology","volume":"180 ","pages":"Article 106402"},"PeriodicalIF":2.1000,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Archives of oral biology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0003996925002304","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Objective
To characterize and compare the molecular and thermal characteristics of enamel, dentin, cementum, and the dentin–pulp complex in permanent third molars using Fourier-transform infrared (FTIR) spectroscopy and differential scanning calorimetry (DSC).
Design
Samples from extracted third molars (n = 15) were prepared and analyzed using FTIR to assess molecular composition and DSC to evaluate thermal transitions, including dehydration, collagen degradation, and mineral phase transformation. All measurements were conducted in triplicate.
Results
FTIR revealed enamel as highly mineralized with minimal organic content, dentin and cementum as collagen-rich, and the dentin–pulp complex as a hybrid tissue. DSC analysis identified consistent thermal transitions: water loss (110–125 °C), collagen breakdown (300–320 °C), and mineral decomposition (455–470 °C). Enamel displayed the highest crystallinity, while cementum exhibited the highest enthalpy change. Tissues with stronger FTIR collagen peaks corresponded to higher DSC energy release during protein degradation.
Conclusion
Molecular and thermal profiling of dental tissues provide baseline reference data for biomaterial design and regenerative strategies.
Clinical significance
Understanding tissue-specific molecular and thermal properties can guide the development of biomimetic restorative materials, inform safer thermal thresholds during clinical procedures, and support diagnostic approaches for aging and pathological changes.
期刊介绍:
Archives of Oral Biology is an international journal which aims to publish papers of the highest scientific quality in the oral and craniofacial sciences. The journal is particularly interested in research which advances knowledge in the mechanisms of craniofacial development and disease, including:
Cell and molecular biology
Molecular genetics
Immunology
Pathogenesis
Cellular microbiology
Embryology
Syndromology
Forensic dentistry