Molecular Interactions within Nanoconfinement of Model DNA Nanostructures Controlled by Compensatory Kinetics as Revealed by Single-Molecule Fluorescence Analysis.

IF 8.7 Q1 CHEMISTRY, MULTIDISCIPLINARY
JACS Au Pub Date : 2025-08-28 eCollection Date: 2025-09-22 DOI:10.1021/jacsau.5c00774
Nora Hagleitner-Ertuğrul, Yongzheng Xing, Juergen Pfeffermann, Alexia Rottensteiner, Anna Gaugutz, Denis G Knyazev, Peter Pohl, Stefan Howorka
{"title":"Molecular Interactions within Nanoconfinement of Model DNA Nanostructures Controlled by Compensatory Kinetics as Revealed by Single-Molecule Fluorescence Analysis.","authors":"Nora Hagleitner-Ertuğrul, Yongzheng Xing, Juergen Pfeffermann, Alexia Rottensteiner, Anna Gaugutz, Denis G Knyazev, Peter Pohl, Stefan Howorka","doi":"10.1021/jacsau.5c00774","DOIUrl":null,"url":null,"abstract":"<p><p>Molecular interactions under steric confinement are important in chemistry, biology, biotechnology, and medicine. The impact of nanoconfinement on the underpinning kinetics and affinities is, however, unclear. While theoretical frameworks predict any effect only for very fast diffusion-limited association kinetics, experimental studies report that molecules can be trapped inside confined spaces to increase the effective local concentration and impact binding kinetics. Understanding is furthermore complicated by poorly comparable confinement geometries and reactions. Here, we determine the kinetics and affinities for interactions slower than the diffusion limit using highly modular DNA origami nanopores as model nanoconfinement systems. The pores feature either inside or outside their narrow lumen a single receptor, which can bind to three differently sized biomolecular ligands. We conduct kinetic binding analysis at the single-molecule resolution using fluorescence correlation spectroscopy to readily acquire large datasets and help overcome limitations of other single-molecule approaches. Nanoconfinement is found to hinder ligand association and dissociation, even below the diffusion limit. Yet, both suppressed kinetics compensate for each other to yield the same overall equillibrium affinity as nonconfined receptors, while local concentration enhancement by ligand trapping was not observed. We expect our insights and experimental strategy to guide the development of biosensing nanopores and help advance the understanding of biological nanochannels.</p>","PeriodicalId":94060,"journal":{"name":"JACS Au","volume":"5 9","pages":"4427-4438"},"PeriodicalIF":8.7000,"publicationDate":"2025-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12458038/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JACS Au","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1021/jacsau.5c00774","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/9/22 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Molecular interactions under steric confinement are important in chemistry, biology, biotechnology, and medicine. The impact of nanoconfinement on the underpinning kinetics and affinities is, however, unclear. While theoretical frameworks predict any effect only for very fast diffusion-limited association kinetics, experimental studies report that molecules can be trapped inside confined spaces to increase the effective local concentration and impact binding kinetics. Understanding is furthermore complicated by poorly comparable confinement geometries and reactions. Here, we determine the kinetics and affinities for interactions slower than the diffusion limit using highly modular DNA origami nanopores as model nanoconfinement systems. The pores feature either inside or outside their narrow lumen a single receptor, which can bind to three differently sized biomolecular ligands. We conduct kinetic binding analysis at the single-molecule resolution using fluorescence correlation spectroscopy to readily acquire large datasets and help overcome limitations of other single-molecule approaches. Nanoconfinement is found to hinder ligand association and dissociation, even below the diffusion limit. Yet, both suppressed kinetics compensate for each other to yield the same overall equillibrium affinity as nonconfined receptors, while local concentration enhancement by ligand trapping was not observed. We expect our insights and experimental strategy to guide the development of biosensing nanopores and help advance the understanding of biological nanochannels.

单分子荧光分析揭示了补偿动力学控制的模型DNA纳米结构纳米约束内的分子相互作用。
空间约束下的分子相互作用在化学、生物学、生物技术和医学中都很重要。然而,纳米限制对基础动力学和亲和的影响尚不清楚。虽然理论框架预测仅对非常快的扩散限制结合动力学有任何影响,但实验研究报告称,分子可以被困在受限空间内,以增加有效的局部浓度和影响结合动力学。难以比较的约束几何和反应进一步使理解复杂化。在这里,我们使用高度模块化的DNA折纸纳米孔作为模型纳米约束系统,确定了比扩散极限慢的相互作用的动力学和亲和性。小孔的特点是在狭窄的腔内或腔外都有一个单一的受体,它可以结合三种不同大小的生物分子配体。我们在单分子分辨率下使用荧光相关光谱进行动力学结合分析,以方便地获取大型数据集,并帮助克服其他单分子方法的局限性。纳米约束被发现阻碍配体的结合和解离,甚至低于扩散极限。然而,两种抑制的动力学相互补偿,产生与非受限受体相同的总体平衡亲和力,而没有观察到配体捕获的局部浓度增强。我们期望我们的见解和实验策略能够指导生物传感纳米孔的发展,并有助于促进对生物纳米通道的理解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.10
自引率
0.00%
发文量
0
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信