Infectious Diseases in Children: Diagnosing the Impact of Climate Change-Related Disasters Using Integer-Valued Autoregressive Models with Overdispersion.
{"title":"Infectious Diseases in Children: Diagnosing the Impact of Climate Change-Related Disasters Using Integer-Valued Autoregressive Models with Overdispersion.","authors":"Dessie Wanda, Holivia Almira Jacinta, Arief Rahman Hakim, Atina Ahdika, Suryane Sulistiana Susanti, Khreshna Syuhada","doi":"10.3390/diseases13090303","DOIUrl":null,"url":null,"abstract":"<p><p>The incidence of infectious diseases in children may be affected by climate change-related disaster risks that increase as extreme weather events become more frequent. Therefore, this research aims to diagnose the impact of such disaster risks on the disease incidence, focusing on diarrhoea, dengue haemorrhagic fever (DHF), and acute respiratory infection (ARI), commonly experienced by children. To accomplish this task, we construct integer-valued autoregressive (INAR) models for the number of disease cases among children in several age groups, with an overdispersed distributional assumption to account for its variability that exceeds its central tendency. Additionally, we include the numbers of floods, landslides, and extreme weather events at previous times as explanatory variables. In particular, we consider a case study in Indonesia, a tropical country highly vulnerable to the aforementioned climate change-related diseases and disasters. Using monthly data from January 2010 to December 2024, we find that the incidence of diarrhoea in children is positively impacted by landslides (but negatively affected by floods and extreme weather events). Landslides, frequently caused by excessive rainfall, also increase DHF incidence. Furthermore, the increased incidence of ARI is driven by extreme weather conditions, which are more apparent during and after COVID-19. These findings offer insights into how climate scenarios may increase children's future health risks. This helps shape health strategies and policy responses, highlighting the urgent need for preventive measures to protect future generations.</p>","PeriodicalId":72832,"journal":{"name":"Diseases (Basel, Switzerland)","volume":"13 9","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12468014/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diseases (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/diseases13090303","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The incidence of infectious diseases in children may be affected by climate change-related disaster risks that increase as extreme weather events become more frequent. Therefore, this research aims to diagnose the impact of such disaster risks on the disease incidence, focusing on diarrhoea, dengue haemorrhagic fever (DHF), and acute respiratory infection (ARI), commonly experienced by children. To accomplish this task, we construct integer-valued autoregressive (INAR) models for the number of disease cases among children in several age groups, with an overdispersed distributional assumption to account for its variability that exceeds its central tendency. Additionally, we include the numbers of floods, landslides, and extreme weather events at previous times as explanatory variables. In particular, we consider a case study in Indonesia, a tropical country highly vulnerable to the aforementioned climate change-related diseases and disasters. Using monthly data from January 2010 to December 2024, we find that the incidence of diarrhoea in children is positively impacted by landslides (but negatively affected by floods and extreme weather events). Landslides, frequently caused by excessive rainfall, also increase DHF incidence. Furthermore, the increased incidence of ARI is driven by extreme weather conditions, which are more apparent during and after COVID-19. These findings offer insights into how climate scenarios may increase children's future health risks. This helps shape health strategies and policy responses, highlighting the urgent need for preventive measures to protect future generations.